
- •Глава 6 водяной пар и его свойства
- •§6.1. Основные понятия и определения
- •§ 6.2. Термодинамическая фазовая рТ – диаграмма. Уравнение клапейрона - клаузиуса
- •§ 6.6. Основные параметры воды и водяного пара
- •§ 6.7. Процессы изменения состояния водяного пара в pν -,ts - и is -диаграммах
- •§ 6.8. Влажный воздух. Абсолютная влажность, влагосодержание и относительная влажность воздуха
- •§ 6.9. Теплоемкость и энтальпия влажного воздуха
- •Глава 7 термодинамика газового потока
- •§ 7.1. Уравнение энергии газового потока
- •§7.2. Располагаемая работа газового потока
- •§ 7.3. Основные закономерности соплового и диффузорного адиабатного течения газа
- •§ 7.4. Истечение идеального газа из суживающихся сопел
- •§ 7.5 Истечение идеального газа из комбинированного сопла лаваля
- •§ 7.6. Расчет истечения реальных газов и паров
- •7.7 Адиабатное дросселирование
- •§ 7.8. Дроссельный эффект (эффект джоуля-томсона)
- •§ 7.9. Газовые смеси
- •Глава 8 компрессорные машины
- •§ 8.1. Мощность привода и коэффициенты полезного действия компрессора
- •§ 8.2. Многоступенчатый компрессор
- •Глава 9 циклы поршневых двигателей внутреннего сгорания
- •§ 9.1. Краткие исторические сведения
- •§ 9.2. Классификация двс
- •§ 9.3. Циклы двс с подводом теплоты при постоянном объёме
- •§9.4. Циклы двс с подводом теплоты при постоянном давлении
- •§ 9.5. Циклы двс со смешанным подводом теплоты
- •Глава 10 циклы газотурбинных установок и реактивных двигателей
- •§ 10.1. Циклы гту с подводом теплоты при постоянном давлении
- •§10.2. Циклы гту с подводом теплоты при постоянном объеме
- •§ 10.3. Методы повышения термического кпд гту
- •§ 10.4. Циклы реактивных двигателей. Жидкостные реактивные двигатели
- •10.5. Воздушно-реактивные двигатели
- •§ 10.6. Пульсирующий воздушно-реактивный двигатель
- •§ 10.7. Компрессорные воздушно-реактивные двигатели
- •§ 10.8. Термодинамические методы сравнения циклов тепловых двигателей
- •Глава 11 циклы паросиловых установок мгд-генератор
- •§ 11.1. Цикл карно во влажном паре и его недостатки
- •§ 11.2. Основной цикл псу-цикл ренкина
- •§ 11.3. Полезная работа цикла ренкина. Работа питательного насоса
- •§ 11.4. Термический кпд цикла ренкина
- •§ 11.5. Влияние параметров пара на термический кпд цикла ренкина
- •§ 11.6. Промежуточный перегрев пара
- •§ 11.7. Регенеративный цикл паросиловой установки
- •§ 11.8. Бинарные (двойные) циклы
- •§ 11.9. Циклы парогазовых установок
- •§ 11.10. Циклы атомных электростанций
- •§ 11.11. Циклы электрических станций с магнитогидродинамическими генераторами
- •Глава 12 циклы холодильных машин
- •§12.1. Цикл воздушной холодильной установки
- •§ 12.2. Цикл паровой компрессорной холодильной установки
- •§ 12.3. Цикл холодильной установки абсорбционного типа
- •§ 12.4. Цикл пароэжекторной холодильной установки
- •§ 12.5. Тепловой насос
- •§ 12.6. Вихревая труба
- •§ 12.7. Термотрансформаторы
- •Глава 13 элементы химической термодинамики
- •§ 13.1. Классификация химических реакций
- •§13.2. Первый закон термодинамики в применении к химическим реакциям
- •§ 13.3. Тепловой эффект реакции
- •§ 13.4. Теплоты химических реакций
- •§ 13.5. Закон гесса
- •§13.6..Закон кирхгофа
- •§ 13.7. Применение второго закона термодинамики к химическим процессам
- •§ 13.8. Изохорно-изотермический и изобарно-изотермический потенциалы
- •§13.9. Максимальная работа реакции
- •§ 13.10. Уравнения максимальной работы (уравнения гиббса-гельмгольца)
- •13.11. Химический потенциал
- •§ 13.12. Условия равновесия в изолированных однородных (гомогенных) системах
- •§ 13.13. Условия равновесия в изолированных неоднородных (гетерогенных) системах и химических реакциях
- •§13.14. Равновесие в химических реакциях
- •§ 13.15. Закон действующих масс. Константы равновесия химических реакций
- •§ 13.16. Термическая диссоциация. Степень диссоциации
- •§ 13.17. Зависимость между константой равновесия и степенью диссоциации
- •§ 13.18. Зависимость между константой равновесия и максимальной работой. Уравнение изотермы химической реакции
- •§ 13.19. Влияние температуры реакции на химическое равновесие. Принцип ле-шателье
- •§ 13.20, Тепловая теорема нернста. Третье начало термодинамики
- •§ 13.21. Третье начало термодинамики в формулировке планка (постулат планка)
§9.4. Циклы двс с подводом теплоты при постоянном давлении
Двигатели, в основу работы которых положен цикл с подводом теплоты при постоянном давлении (с постепенным сгоранием), имеют ряд преимуществ по сравнению с двигателями, работающими по циклу с подводом теплоты при постоянном объеме. Они связаны с тем, что в двигателях с постепенным сгоранием осуществляется раздельное сжатие топлива и воздуха. Поэтому здесь можно достигать значительно более высоких степеней сжатия.
Воздух
при высоких давлениях имеет настолько
высокую температуру, что
подаваемое
в цилиндр топливо самовоспламеняется
без всяких специальных запальных
приспособлений. Кроме того, раздельное
сжатие воздуха и топлива позволяет
использовать любое жидкое дешевое
топливо - нефть, мазут, смолы и проч.
В двигателях с постепенным сгоранием топлива воздух сжимается в цилиндре, а жидкое топливо распыляется сжатым воздухом от компрессора. Раздельное сжатие позволяет применять высокие степени сжатия (до ε=20), исключая преждевременное самовоспламенение топлива. Постоянство давления при горении топлива обеспечивается соответствующей регулировкой топливной форсунки. Конструкция такого двигателя впервые была разработана немецким инженером Дизелем.
Рассмотрим идеальный цикл двигателя с подводом теплоты при постоянном давлении pν - диаграмме (рис. 9.3).
Рис. 9.3
Этот цикл осуществляется следующим образом. Газообразное рабочее тело с начальными параметрами p1 , v1, T1 сжимается по адиабате 1-2. В изобарном процессе 2-3 телу сообщается некоторое количество теплоты q1. В адиабатном процессе 3-4 происходит расширение рабочего тела до первоначального объема. В изохорном процессе 4-1 рабочее тело возвращается в первоначальное состояние с отводом в теплоприемник теплоты q2. Характеристиками цикла являются:
- степень сжатия;
- степень предварительного расширения.
Количество подведенной и отведенной теплоты определяются по формулам
;
.
Термический кпд цикла в предположении постоянства теплоемкостей сp и cv и их отношения k=cp/cv будет
.
Параметры рабочего тела в характерных точках цикла будут. Точка 2.
;
;
.
Отсюда
.
Точка 3.
;
.
.
Отсюда
.
Точка 4.
;
;
.
Так как
,
то
.
Подставляя полученные значения температур в формулу для кпд, получим
. (9.2)
Отсюда следует, что с увеличением ε и k кпд увеличивается, а с увеличением ρ - уменьшается.
Работа цикла определяется по формуле
.
Сравнения кпд циклов ДВС с подводом теплоты при р = const и ν = const при одинаковых давлениях и температурах, но при различных ε показывают, что
.
При этом степень сжатия ε в цикле с подводом теплоты при р = const больше, чем в цикле с подводом теплоты при ν = const (доказательство см. в [5,13]).
Величина ε в цикле с подводом теплоты при постоянном давлении выбирается таким образом, чтобы обеспечивались условия самовоспламенения топлива. Таким условиям в компрессорных дизелях соответствует ε = 14 -18. Подробнее о методах сравнения кпд циклов различных тепловых двигателей см. § 10.8.