
- •Глава 6 водяной пар и его свойства
- •§6.1. Основные понятия и определения
- •§ 6.2. Термодинамическая фазовая рТ – диаграмма. Уравнение клапейрона - клаузиуса
- •§ 6.6. Основные параметры воды и водяного пара
- •§ 6.7. Процессы изменения состояния водяного пара в pν -,ts - и is -диаграммах
- •§ 6.8. Влажный воздух. Абсолютная влажность, влагосодержание и относительная влажность воздуха
- •§ 6.9. Теплоемкость и энтальпия влажного воздуха
- •Глава 7 термодинамика газового потока
- •§ 7.1. Уравнение энергии газового потока
- •§7.2. Располагаемая работа газового потока
- •§ 7.3. Основные закономерности соплового и диффузорного адиабатного течения газа
- •§ 7.4. Истечение идеального газа из суживающихся сопел
- •§ 7.5 Истечение идеального газа из комбинированного сопла лаваля
- •§ 7.6. Расчет истечения реальных газов и паров
- •7.7 Адиабатное дросселирование
- •§ 7.8. Дроссельный эффект (эффект джоуля-томсона)
- •§ 7.9. Газовые смеси
- •Глава 8 компрессорные машины
- •§ 8.1. Мощность привода и коэффициенты полезного действия компрессора
- •§ 8.2. Многоступенчатый компрессор
- •Глава 9 циклы поршневых двигателей внутреннего сгорания
- •§ 9.1. Краткие исторические сведения
- •§ 9.2. Классификация двс
- •§ 9.3. Циклы двс с подводом теплоты при постоянном объёме
- •§9.4. Циклы двс с подводом теплоты при постоянном давлении
- •§ 9.5. Циклы двс со смешанным подводом теплоты
- •Глава 10 циклы газотурбинных установок и реактивных двигателей
- •§ 10.1. Циклы гту с подводом теплоты при постоянном давлении
- •§10.2. Циклы гту с подводом теплоты при постоянном объеме
- •§ 10.3. Методы повышения термического кпд гту
- •§ 10.4. Циклы реактивных двигателей. Жидкостные реактивные двигатели
- •10.5. Воздушно-реактивные двигатели
- •§ 10.6. Пульсирующий воздушно-реактивный двигатель
- •§ 10.7. Компрессорные воздушно-реактивные двигатели
- •§ 10.8. Термодинамические методы сравнения циклов тепловых двигателей
- •Глава 11 циклы паросиловых установок мгд-генератор
- •§ 11.1. Цикл карно во влажном паре и его недостатки
- •§ 11.2. Основной цикл псу-цикл ренкина
- •§ 11.3. Полезная работа цикла ренкина. Работа питательного насоса
- •§ 11.4. Термический кпд цикла ренкина
- •§ 11.5. Влияние параметров пара на термический кпд цикла ренкина
- •§ 11.6. Промежуточный перегрев пара
- •§ 11.7. Регенеративный цикл паросиловой установки
- •§ 11.8. Бинарные (двойные) циклы
- •§ 11.9. Циклы парогазовых установок
- •§ 11.10. Циклы атомных электростанций
- •§ 11.11. Циклы электрических станций с магнитогидродинамическими генераторами
- •Глава 12 циклы холодильных машин
- •§12.1. Цикл воздушной холодильной установки
- •§ 12.2. Цикл паровой компрессорной холодильной установки
- •§ 12.3. Цикл холодильной установки абсорбционного типа
- •§ 12.4. Цикл пароэжекторной холодильной установки
- •§ 12.5. Тепловой насос
- •§ 12.6. Вихревая труба
- •§ 12.7. Термотрансформаторы
- •Глава 13 элементы химической термодинамики
- •§ 13.1. Классификация химических реакций
- •§13.2. Первый закон термодинамики в применении к химическим реакциям
- •§ 13.3. Тепловой эффект реакции
- •§ 13.4. Теплоты химических реакций
- •§ 13.5. Закон гесса
- •§13.6..Закон кирхгофа
- •§ 13.7. Применение второго закона термодинамики к химическим процессам
- •§ 13.8. Изохорно-изотермический и изобарно-изотермический потенциалы
- •§13.9. Максимальная работа реакции
- •§ 13.10. Уравнения максимальной работы (уравнения гиббса-гельмгольца)
- •13.11. Химический потенциал
- •§ 13.12. Условия равновесия в изолированных однородных (гомогенных) системах
- •§ 13.13. Условия равновесия в изолированных неоднородных (гетерогенных) системах и химических реакциях
- •§13.14. Равновесие в химических реакциях
- •§ 13.15. Закон действующих масс. Константы равновесия химических реакций
- •§ 13.16. Термическая диссоциация. Степень диссоциации
- •§ 13.17. Зависимость между константой равновесия и степенью диссоциации
- •§ 13.18. Зависимость между константой равновесия и максимальной работой. Уравнение изотермы химической реакции
- •§ 13.19. Влияние температуры реакции на химическое равновесие. Принцип ле-шателье
- •§ 13.20, Тепловая теорема нернста. Третье начало термодинамики
- •§ 13.21. Третье начало термодинамики в формулировке планка (постулат планка)
Глава 6 водяной пар и его свойства
§6.1. Основные понятия и определения
Парообразованием называется процесс превращения вещества из жидкого состояния в газообразное.
Испарением называется парообразование, которое происходит только с поверхности жидкости. С увеличением температуры интенсивность испарения возрастает.
Кипением называется такой процесс превращения жидкости в пар, который происходит не только с поверхности жидкости, но и внутри нее, т.е. это процесс парообразования во всей массе жидкости. Кипение происходит при определенной температуре, зависящей от рода жидкости и от ее давления. Процесс кипения осуществляется при подводе к жидкости теплоты при неизменном давлении.
Под конденсацией понимается процесс перехода вещества из газообразного состояния в жидкое. Процесс конденсации происходит при отводе от пара теплоты при неизменном давлении. Конденсация, так же как и процесс кипения, происходит при постоянной температуре.
Сублимацией
(возгонкой) называется процесс перехода
вещества из твердого
состояния в газообразное. Обратный
процесс перехода газа в твердое состояние
называется десублимацией.
При парообразовании в неограниченном пространстве вся жидкость может превратиться в пар. Если процесс парообразования происходит в закрытой емкости; то между процессами парообразования и обратного перехода пара в жидкость может наступить равновесие. Пар в таком состоянии принимает максимальную плотность при данной температуре и давлении и называется насыщенным. Следовательно, насыщенный пар это пар, находящийся в равновесном состоянии с жидкостью, из которой он получается. При изменении температуры жидкости равновесие нарушается, что приводит к соответствующему изменению плотности и давления насыщенного пара.
При испарении всей жидкости получается сухой насыщенный пар, который не содержит частиц жидкой фазы. Температура и объем сухого насыщенного пара являются функциями давления, поэтому его состояние определяется лишь одним параметром - давлением или температурой.
Насыщенный пар, который содержит мельчайшие капельки жидкости, называется влажным насыщенным паром.
Отношение массы сухого насыщенного пара тс , содержащегося во влажном паре, к общей массе (пар + жидкость) влажного насыщенного пара тс + тж, называется степенью сухости пара (паросодержанием) х, т.е.
где тв = тс + тж. - масса влажного пара; тж. - масса жидкости во влажном паре.
Таким образом, степень сухости определяет долю сухого насыщенного пара во влажном паре.
Массовая доля жидкости во влажном паре называется степенью влажности пара и обозначается (1-х).
Степень сухости х может меняться в пределах от нуля до единицы. Например, для кипящей жидкости при температуре насыщения (температуре кипения при данном давлении) х=0, а для сухого насыщенного пара х=1.
Если к сухому насыщенному пару подводить теплоту, то температура его будет возрастать и пар становится перегретым. Разность между температурой tп перегретого пара и температурой ts сухого насыщенного пара называется степенью перегрева. Перегретый пар является ненасыщенным. При данном давлении его плотность меньше плотности сухого насыщенного пара, а удельный объем больше. Чем выше степень перегрева, тем больше по своим свойствам перегретый пар приближается к газу.