
- •Оглавление
- •2 Электрохимические системы
- •2.1. Определение электрохимической системы
- •2.2. Прохождение электрического тока в электрохимической системе. Законы фарадея
- •2.3. Термодинамически обратимые и необратимые электрохимические системы
- •2.4. Классификация термодинамически обратимых электрохимических систем
- •2.5. Составляющие электрохимической системы
- •2.6. Идеальные и реальные электрохимические системы
- •3 Метод активности
- •3.1. Формальный метод активности льюиса
- •3.2. Расчет коэффициента активности по дебдш и хюккелю
- •3.3. Расчет коэффициента активности по робинсону и стоксу
- •3.4. Эмпирические способы расчета коэффициентов активности
- •4 Ионные равновесии
- •4.1. Ионные равновесия в растворах электролитов
- •4.2. Сольволиз и буферные свойства
- •4.3. Константы образования комплексных ионов
- •4.4. Ступенчатая диссоциация электролитов
- •4.5. Ионные равновесия в растворах электролитов в присутствии твердой фазы
- •5 Процессы переноса в электрохимических системах
- •5.1. Электрическая проводимость
- •5.1.1. Электронная проводимость
- •Ионная проводимость
- •Электрическая проводимость газов
- •5.1.2.2. Электрическая проводимость твердых тел
- •5.1.2.3. Электрическая проводимость расплавленных соединений
- •5.1.2.4. Электрическая проводимость растворов
- •5.1.3. Теории электрической проводимости растворов
- •5.1.3.1. Простая гидродинамическая теория
- •5.1.3.2. Теория дебая – хюккеля – онзагера
- •5.1.3.3. Теория эйринга
- •5.1.3.4. Протолитическая теория электролитической проводимости
- •5.1.3.5. Применение средней ионной активности для расчета проводимости
- •5.2. Диффузия в растворах электролитов
- •5.3. Диффузионный, или жидкостный, потенциал
- •5.4. Конвективный перенос в растворах
- •5.5. Термодиффузия
- •6. Напряжение электрохимических систем
- •6.1. Возникновение напряжения в электрохимической системе
- •6.2. Равновесные потенциалы на границах раздела фаз
- •6.3. Уравнения равновесного электродного потенциала
- •6.4. Влияние температуры на электродный потенциал
- •6.5. Выбор относительной шкалы потенциалов
- •6.6. Электроды сравнения
- •6.7. Правило лютера
- •6.8. Термодинамическое равновесие с растворителем
- •6.9. Расчет напряжения электрохимических систем с помощью потенциалов в относительной шкале
- •6.9.1. Напряжение электрохимических систем с химической реакцией
- •Напряжение электрохимических систем без химической реакции
- •Напряжение электрохимических систем без химической реакции
- •6.10. Методы устранения диффузионного потенциала
- •4,2 Кмоль/м3 20,4 кмоль/м3
- •6.11. Термодинамика электрохимических систем
- •6.12. Ионоселективные электроду
- •6.12.1. Уравнение мембранного потенциала
- •6.12.2. Электроды с твердыми ионитовыми мембранами
- •6.12.3. Электроды с жидкими ионитовыми memбpahaми
- •6.12.4. Измерение напряжения электрохимических систем с ионоселективными электродами
- •7 Двой ной электрический слой
- •Явления адсорбции при образовании двойного электрического слоя
- •Злектрокапиллярные явления на ртути и твердых металлах
- •7.3. Емкость двойного электрического слоя
- •7.3.1. Влияние специфической адсорбции ионов на поверхностное натяжение и емкость двойного электрического слоя
- •7.3.2. Заряжение емкости двойного электрического слоя
- •7.4. Теории строения двойного электрического слоя
- •7.5. Двойной слой на твердых электродах
- •7.6. Двойной слой на электродах в расплавленных и твердых электролитах
- •%(%8 Кинетика электродных процессов
- •8.1. Поляризационные кривые
- •8.2. Перенапряжение электрохимической стадии
- •8.2.1. Уравнение поляризационной кривой без учета специфической адсорбции и ψ’-потенциала
- •Влияние ψ’-потенциала на скорость реакции разряда — ионизации
- •8.2.3. Стандартная константа скорости реакции переноса электрона и стандартная плотность тока обмена
- •8.2.4. Способы определения коэффициентов переноса из поляризационных кривых
- •8.3. Стадийные электродные реакции
- •8.4. Электрохимические реакции, включающие быстрые химические стадии
- •8.5. Определение порядков электрохимических реакций
- •8.6. Безбарьерные и безактивациониые электрохимические реакции
- •8.7. Кинетика реакций при конечных степенях заполнения поверхности
- •9 Диффузионная кинетика
- •9.1. Перенапряжение диффузии
- •9.2. Перенапряжение диффузии с учетом миграции
- •9.3. Поляризационные кривые при замедленной стадии диффузии
- •9.4. Окислительно-восстановительные реакции
- •9.5. Сложные окислительно-восстановительные реакции
- •9.6. Наложение перенапряжения диффузии и замедленного переноса электронов (смешанная кинетика)
- •10 Перенапряжение химической реакции
- •10.1. Перенапряжение, обусловленное предшествующей гомогенной химической реакцией в катодном процессе и последующей химической реакцией в анодном процессе
- •10.2. Общий случай электрохимической реакции с замедленной гомогенной химической стадией
- •10.3. Перенапряжение, обусловленное гетерогенными химическими стадиями
- •10.4. Зависимость плотности тока от концентрации и порядок химической реакции
- •11 Примеры различных механизмов электрохимических реакций
- •11.1. Реакция выделения водорода
- •11.2. Кинетика реакций в расплавах и твердых электролитах
- •12 Кинетика реакций электрохимического выделения металлов
- •12.1. Кинетика реакций выделения металлов на жидких катодах
- •12.2. Кинетика реакций при электроосаждении металлов на твердых электродах
- •12.3. Влияние поверхностно-активных веществ на рост кристаллов
- •12.4. Влияние природы металла и состава раствора на кинетические параметры
- •12.5. Электроосаждение металлов из расплавов
- •12.6. Электрохимическое восстановление оксидов
- •13 Анодное растворение и пассивность металлов
- •13.1. Анодное растворение металлов
- •13.2. Пассивность металлов
- •13.2.1. Теория пассивности
- •13.2.2. Кинетика процесса пассивирования
- •14 Короткозамкнутые электрохимические системы
- •14.1. Общие положения
- •14.2. Электрохимическая коррозия
- •14.2.1. Скорость коррозии металла и коррозионный потенциал
- •14.2.2. Растворение металлов под током в коррозйонноактивных средах
- •14.2.3. Коррозия технических металлов
- •14.2.4. Способы снижения скорости коррозионного процесса
- •14.3. Контактное вытеснение металлов (цементация)
- •14.3.1. Общие положения
- •14.3.2. Кинетика процесса цементации
- •14.3.3. Конечный период цементации
- •15 Параллельные электрохимические реакции
- •15.1. Условия протеканий параллельных реакций
- •15.2. Распределение плотности тока между параллельными реакциями
- •16 Основы методов исследования электрохимических реакций
- •16.1. Общие требования к методам исследования
- •16.2. Электроды, применяемые в кинетических исследованиях
- •16.3. Измерение потенциалов под током
- •16.4. Методы исследования
- •Литература
16.3. Измерение потенциалов под током
Существует два основных метода измерения потенциала электрода под током: метод Нернста — Глезера и метод измерения с помощью капилляра Луггина — Габера. Метод Нернста — Глезера основан на том, что электрод сравнения, являющийся одновременно и поляризующимся электродом, имеет поверхность, во много раз большую, чем рабочий электрод. Поэтому при пропускании малых токов (например, в полярографии около 10–6 А) плотность тока на электроде сравнения настолько мала, что его потенциал остается практически равновесным.
В методе, использующем капилляр Луггина — Габера, электрод сравнения служит только для измерения потенциала. Он помещается в отдельном отсеке ячейки, а электрический контакт с рабочим электродом осуществляется через капилляр, заполненный электролитом. Для уменьшения омических потерь капилляр подводят возможно ближе к поверхности электрода. Однако в этом случае капилляр экранирует часть поверхности и нарушает равномерное распределение тока, что особенно существенно, если площадь рабочего электрода мала. На рис. 16.2 приведены различные способы подвода капилляра к поверхности рабочего электрода, но ни один из них не дает полной гарантии точного измерения потенциала.
Оба метода измерения потенциала электрода под током обладают тем недостатком, что в измеряемое значение потенциала включается падение потенциала в растворе ΔЕом. В методе Нернста — Глезера
Рис. 16.2. Способы подвода капилляра Луггина — Габера к поверхности работающего электрода:
а — в, д, е — капилляр подводится со стороны второго работающего электрода; г — капилляр подводится с тыльной стороны через отверстие в электроде.
ΔЕом — это падение потенциала менаду двумя электродами, а в методе с капилляром — падение потенциала между электродом и срезом капилляра Луггина — Габера. Падение потенциала пропорционально сопротивлению раствора R и току I: ΔEом = RI. Таким образом, при наличии омической составляющей измеряемый потенциал Еизм по абсолютному значению всегда больше потенциала Ε электрода: |Е| = |Еизм| – [ΔЕом|
Оценим омическую составляющую при измерениях методом Нернста — Глезера. Если принять сопротивление ячейки 500 Ом, а ток 10–5 А, то ΔЕом = 500∙10–5 = 5∙10–3 В. При измерениях по трехэлектродной схеме в водных растворах сопротивление между электродом и срезом капилляра Луггина — Габера примерно 0,2 — 0,5 Ом. Тогда при токе 10–2 Α ΔЕом = 0,5∙10–2 = 5∙10–3 В. Сечение капилляра Луггина — Габера обычно около 1∙10–6 м2. Следовательно, ток 10–2 А соответствует плотности тока на электроде 104 А/м2. Таким образом, в рассмотренном примере омической составляющей можно пренебречь вплоть до очень высоких плотностей тока. При измерениях в расплавах положение аналогично. Однако сопротивление неводных растворов обычно на порядок выше и, следовательно, значение омической составляющей в этих условиях будет равно 5·10–2 В, что уже недопустимо.
Из приведенных примеров следует, что для снижения омической составляющей необходимо использовать электролиты с высокой электрической проводимостью. Так как возможности в этом отношении ограничены, то омическую составляющую необходимо измерять и учитывать при расчете истинного значения потенциала.
Омическую составляющую можно измерить методом гальваностатического импульса. Если между рабочим и вспомогательным электродами пропустить импульс постоянного тока, а на экране осциллографа зафиксировать зависимость потенциала от времени, то кривая высвечивается на некотором расстоянии от потенциала без тока (рис. 16.3). Так как омическая составляющая возникает мгновенно в момент включения тока, то невысвеченный участок по оси ординат и
Рис. 16.3. Схема, поясняющая изменение омической составляющей.
характеризует ΔЕОм. Аналогичный эффект наблюдается при выключении тока, а также при поляризации электрода прямоугольными гальваностатическими импульсами. Если невысвеченный участок есть действительно омическая составляющая, то, увеличивая или уменьшая значение тока, получим:
Измерение омической составляющей, равно как и снятие всей поляризационной кривой, следует проводить при строго фиксированном положении среза капилляра Луггина — Габера у поверхности электрода, ибо изменение расстояния от электрода до капилляра вызывает изменение сопротивления.