
- •Оглавление
- •2 Электрохимические системы
- •2.1. Определение электрохимической системы
- •2.2. Прохождение электрического тока в электрохимической системе. Законы фарадея
- •2.3. Термодинамически обратимые и необратимые электрохимические системы
- •2.4. Классификация термодинамически обратимых электрохимических систем
- •2.5. Составляющие электрохимической системы
- •2.6. Идеальные и реальные электрохимические системы
- •3 Метод активности
- •3.1. Формальный метод активности льюиса
- •3.2. Расчет коэффициента активности по дебдш и хюккелю
- •3.3. Расчет коэффициента активности по робинсону и стоксу
- •3.4. Эмпирические способы расчета коэффициентов активности
- •4 Ионные равновесии
- •4.1. Ионные равновесия в растворах электролитов
- •4.2. Сольволиз и буферные свойства
- •4.3. Константы образования комплексных ионов
- •4.4. Ступенчатая диссоциация электролитов
- •4.5. Ионные равновесия в растворах электролитов в присутствии твердой фазы
- •5 Процессы переноса в электрохимических системах
- •5.1. Электрическая проводимость
- •5.1.1. Электронная проводимость
- •Ионная проводимость
- •Электрическая проводимость газов
- •5.1.2.2. Электрическая проводимость твердых тел
- •5.1.2.3. Электрическая проводимость расплавленных соединений
- •5.1.2.4. Электрическая проводимость растворов
- •5.1.3. Теории электрической проводимости растворов
- •5.1.3.1. Простая гидродинамическая теория
- •5.1.3.2. Теория дебая – хюккеля – онзагера
- •5.1.3.3. Теория эйринга
- •5.1.3.4. Протолитическая теория электролитической проводимости
- •5.1.3.5. Применение средней ионной активности для расчета проводимости
- •5.2. Диффузия в растворах электролитов
- •5.3. Диффузионный, или жидкостный, потенциал
- •5.4. Конвективный перенос в растворах
- •5.5. Термодиффузия
- •6. Напряжение электрохимических систем
- •6.1. Возникновение напряжения в электрохимической системе
- •6.2. Равновесные потенциалы на границах раздела фаз
- •6.3. Уравнения равновесного электродного потенциала
- •6.4. Влияние температуры на электродный потенциал
- •6.5. Выбор относительной шкалы потенциалов
- •6.6. Электроды сравнения
- •6.7. Правило лютера
- •6.8. Термодинамическое равновесие с растворителем
- •6.9. Расчет напряжения электрохимических систем с помощью потенциалов в относительной шкале
- •6.9.1. Напряжение электрохимических систем с химической реакцией
- •Напряжение электрохимических систем без химической реакции
- •Напряжение электрохимических систем без химической реакции
- •6.10. Методы устранения диффузионного потенциала
- •4,2 Кмоль/м3 20,4 кмоль/м3
- •6.11. Термодинамика электрохимических систем
- •6.12. Ионоселективные электроду
- •6.12.1. Уравнение мембранного потенциала
- •6.12.2. Электроды с твердыми ионитовыми мембранами
- •6.12.3. Электроды с жидкими ионитовыми memбpahaми
- •6.12.4. Измерение напряжения электрохимических систем с ионоселективными электродами
- •7 Двой ной электрический слой
- •Явления адсорбции при образовании двойного электрического слоя
- •Злектрокапиллярные явления на ртути и твердых металлах
- •7.3. Емкость двойного электрического слоя
- •7.3.1. Влияние специфической адсорбции ионов на поверхностное натяжение и емкость двойного электрического слоя
- •7.3.2. Заряжение емкости двойного электрического слоя
- •7.4. Теории строения двойного электрического слоя
- •7.5. Двойной слой на твердых электродах
- •7.6. Двойной слой на электродах в расплавленных и твердых электролитах
- •%(%8 Кинетика электродных процессов
- •8.1. Поляризационные кривые
- •8.2. Перенапряжение электрохимической стадии
- •8.2.1. Уравнение поляризационной кривой без учета специфической адсорбции и ψ’-потенциала
- •Влияние ψ’-потенциала на скорость реакции разряда — ионизации
- •8.2.3. Стандартная константа скорости реакции переноса электрона и стандартная плотность тока обмена
- •8.2.4. Способы определения коэффициентов переноса из поляризационных кривых
- •8.3. Стадийные электродные реакции
- •8.4. Электрохимические реакции, включающие быстрые химические стадии
- •8.5. Определение порядков электрохимических реакций
- •8.6. Безбарьерные и безактивациониые электрохимические реакции
- •8.7. Кинетика реакций при конечных степенях заполнения поверхности
- •9 Диффузионная кинетика
- •9.1. Перенапряжение диффузии
- •9.2. Перенапряжение диффузии с учетом миграции
- •9.3. Поляризационные кривые при замедленной стадии диффузии
- •9.4. Окислительно-восстановительные реакции
- •9.5. Сложные окислительно-восстановительные реакции
- •9.6. Наложение перенапряжения диффузии и замедленного переноса электронов (смешанная кинетика)
- •10 Перенапряжение химической реакции
- •10.1. Перенапряжение, обусловленное предшествующей гомогенной химической реакцией в катодном процессе и последующей химической реакцией в анодном процессе
- •10.2. Общий случай электрохимической реакции с замедленной гомогенной химической стадией
- •10.3. Перенапряжение, обусловленное гетерогенными химическими стадиями
- •10.4. Зависимость плотности тока от концентрации и порядок химической реакции
- •11 Примеры различных механизмов электрохимических реакций
- •11.1. Реакция выделения водорода
- •11.2. Кинетика реакций в расплавах и твердых электролитах
- •12 Кинетика реакций электрохимического выделения металлов
- •12.1. Кинетика реакций выделения металлов на жидких катодах
- •12.2. Кинетика реакций при электроосаждении металлов на твердых электродах
- •12.3. Влияние поверхностно-активных веществ на рост кристаллов
- •12.4. Влияние природы металла и состава раствора на кинетические параметры
- •12.5. Электроосаждение металлов из расплавов
- •12.6. Электрохимическое восстановление оксидов
- •13 Анодное растворение и пассивность металлов
- •13.1. Анодное растворение металлов
- •13.2. Пассивность металлов
- •13.2.1. Теория пассивности
- •13.2.2. Кинетика процесса пассивирования
- •14 Короткозамкнутые электрохимические системы
- •14.1. Общие положения
- •14.2. Электрохимическая коррозия
- •14.2.1. Скорость коррозии металла и коррозионный потенциал
- •14.2.2. Растворение металлов под током в коррозйонноактивных средах
- •14.2.3. Коррозия технических металлов
- •14.2.4. Способы снижения скорости коррозионного процесса
- •14.3. Контактное вытеснение металлов (цементация)
- •14.3.1. Общие положения
- •14.3.2. Кинетика процесса цементации
- •14.3.3. Конечный период цементации
- •15 Параллельные электрохимические реакции
- •15.1. Условия протеканий параллельных реакций
- •15.2. Распределение плотности тока между параллельными реакциями
- •16 Основы методов исследования электрохимических реакций
- •16.1. Общие требования к методам исследования
- •16.2. Электроды, применяемые в кинетических исследованиях
- •16.3. Измерение потенциалов под током
- •16.4. Методы исследования
- •Литература
14 Короткозамкнутые электрохимические системы
14.1. Общие положения
Обычные электрохимические системы, например типа —Zn | ZnSO4, Hg2SO4 | Hg+ могут находиться либо в разомкнутом, либо в замкнутом состоянии. Но имеется большой класс электрохимических систем, которые можно реализовать только в короткозамкнутом (или близком к нему) состоянии. Слово «короткозамкнутый» здесь означает не только отсутствие сопротивления во внешней цепи, но и малое расстояние между электродами системы, столь малое, что внешней цепи вообще не существует.
Типичным примером таких систем является железная пластина, погруженная в водный раствор серной кислоты. Как правило, поверхность железной пластины из технического железа неоднородна как физически, так и химически (наличие примесей). В результате неоднородности на поверхности железа имеются участки, обладающие относительно раствора разными потенциалами. Благодаря этому на участках с более положительными потенциалами будет протекать реакция восстановления ионов гидроксония, а на участках с более отрицательными потенциалами — реакция окисления металлического железа:
(–) Fe – 2e = Fe2+
(+) 2Н3O+ + 2е = Н2 + 2Н2O
____________________________
Fe + 2Н3O+ = Fe2+ + Н2 + 2Н2О
Электроны в такой системе будут переходить по железной пластине (которая и является как бы «внешней цепью») от участков, на которых идет процесс окисления, к участкам, на которых идет процесс восстановления.
Вторым типичным примером такого рода электрохимических систем является система, состоящая из пластины электроотрицательного металла, погруженного в раствор, содержащий ионы более электроположительного металла, например цинковая пластина, погруженная в водный раствор сульфата меди. В этом случае на определенных участках поверхности будет происходить восстановление ионов электроположительного металла из раствора, а на других — ионизация электроотрицательного металла:
(–) Zn – 2e = Zn2+
(+) Cu2+ + 2е = Сu
______________________
Zn + Сu2+ = Zn2+ + Сu
Принципиальное различие приведенных примеров заключается в характере катодных процессов. Если в первом из них катодная реакция протекает без образования в системе новой твердой фазы, то во втором — на поверхности электроотрицательного металла образуется фаза электроположительного металла.
Подобные электрохимические системы могут быть реализованы при соприкосновении металлов с водными или неводными раство-рами и расплавами.
Короткозамкнутые электрохимические системы, в которых анодным процессом является окисление металла и новая металлическая фаза не образуется, называются коррозионными; системы, образующие новую металлическую фазу, — цементационными, или контактного вытеснения металлов.* Для того, чтобы в коротко-замкнутых электрохимических системах начались электрохимиче-ские реакции, наличие фиксированных участков с разными значе-ниями потенциалов на поверхности металла не обязательно. Нужно лишь, чтобы короткозамкнутая система не находилась в термодинамическом равновесии. Тогда и при наличии строго эквипотенциальной поверхности металла на ней будут статистически неопределенно возникать катодные и анодные участки. При самопроизвольном протекании химической реакции в короткозамкнутой электрохимической системе изменение энергии Гиббса составит
и
т.
е. реакция будет самопроизвольно
протекать, если в данных конкретных
условиях равновесный потенциал реакции
окисления металла отрицательнее
равновесного потенциала соответствующей
сопряженной восстановительной
электрохимической реакции. Самопроизвольно
реакция будет протекать до тех пор, пока
изменение энергии Гиббса не станет
равным нулю. При этом
или (для цементационной системы)
откуда
Этим выражением определяется отношение активностей ионов вытесняемого и вытесняющего компонента в электролите при рав новесии, если в системе нет каких-либо побочных или вторичных реакций.
* Если цементационная система состоит из жидкой амальгамы электроотрицательного металла и раствора, содержащего ионы электроположительного металла, который хорошо растворяется в ртути, то отдельной фазы электроположительного металла может и не образоваться. В этом случае система ведет себя как коррозионная.
Аналогичное выражение получается и для коррозионной электрохимической системы.