
- •Оглавление
- •2 Электрохимические системы
- •2.1. Определение электрохимической системы
- •2.2. Прохождение электрического тока в электрохимической системе. Законы фарадея
- •2.3. Термодинамически обратимые и необратимые электрохимические системы
- •2.4. Классификация термодинамически обратимых электрохимических систем
- •2.5. Составляющие электрохимической системы
- •2.6. Идеальные и реальные электрохимические системы
- •3 Метод активности
- •3.1. Формальный метод активности льюиса
- •3.2. Расчет коэффициента активности по дебдш и хюккелю
- •3.3. Расчет коэффициента активности по робинсону и стоксу
- •3.4. Эмпирические способы расчета коэффициентов активности
- •4 Ионные равновесии
- •4.1. Ионные равновесия в растворах электролитов
- •4.2. Сольволиз и буферные свойства
- •4.3. Константы образования комплексных ионов
- •4.4. Ступенчатая диссоциация электролитов
- •4.5. Ионные равновесия в растворах электролитов в присутствии твердой фазы
- •5 Процессы переноса в электрохимических системах
- •5.1. Электрическая проводимость
- •5.1.1. Электронная проводимость
- •Ионная проводимость
- •Электрическая проводимость газов
- •5.1.2.2. Электрическая проводимость твердых тел
- •5.1.2.3. Электрическая проводимость расплавленных соединений
- •5.1.2.4. Электрическая проводимость растворов
- •5.1.3. Теории электрической проводимости растворов
- •5.1.3.1. Простая гидродинамическая теория
- •5.1.3.2. Теория дебая – хюккеля – онзагера
- •5.1.3.3. Теория эйринга
- •5.1.3.4. Протолитическая теория электролитической проводимости
- •5.1.3.5. Применение средней ионной активности для расчета проводимости
- •5.2. Диффузия в растворах электролитов
- •5.3. Диффузионный, или жидкостный, потенциал
- •5.4. Конвективный перенос в растворах
- •5.5. Термодиффузия
- •6. Напряжение электрохимических систем
- •6.1. Возникновение напряжения в электрохимической системе
- •6.2. Равновесные потенциалы на границах раздела фаз
- •6.3. Уравнения равновесного электродного потенциала
- •6.4. Влияние температуры на электродный потенциал
- •6.5. Выбор относительной шкалы потенциалов
- •6.6. Электроды сравнения
- •6.7. Правило лютера
- •6.8. Термодинамическое равновесие с растворителем
- •6.9. Расчет напряжения электрохимических систем с помощью потенциалов в относительной шкале
- •6.9.1. Напряжение электрохимических систем с химической реакцией
- •Напряжение электрохимических систем без химической реакции
- •Напряжение электрохимических систем без химической реакции
- •6.10. Методы устранения диффузионного потенциала
- •4,2 Кмоль/м3 20,4 кмоль/м3
- •6.11. Термодинамика электрохимических систем
- •6.12. Ионоселективные электроду
- •6.12.1. Уравнение мембранного потенциала
- •6.12.2. Электроды с твердыми ионитовыми мембранами
- •6.12.3. Электроды с жидкими ионитовыми memбpahaми
- •6.12.4. Измерение напряжения электрохимических систем с ионоселективными электродами
- •7 Двой ной электрический слой
- •Явления адсорбции при образовании двойного электрического слоя
- •Злектрокапиллярные явления на ртути и твердых металлах
- •7.3. Емкость двойного электрического слоя
- •7.3.1. Влияние специфической адсорбции ионов на поверхностное натяжение и емкость двойного электрического слоя
- •7.3.2. Заряжение емкости двойного электрического слоя
- •7.4. Теории строения двойного электрического слоя
- •7.5. Двойной слой на твердых электродах
- •7.6. Двойной слой на электродах в расплавленных и твердых электролитах
- •%(%8 Кинетика электродных процессов
- •8.1. Поляризационные кривые
- •8.2. Перенапряжение электрохимической стадии
- •8.2.1. Уравнение поляризационной кривой без учета специфической адсорбции и ψ’-потенциала
- •Влияние ψ’-потенциала на скорость реакции разряда — ионизации
- •8.2.3. Стандартная константа скорости реакции переноса электрона и стандартная плотность тока обмена
- •8.2.4. Способы определения коэффициентов переноса из поляризационных кривых
- •8.3. Стадийные электродные реакции
- •8.4. Электрохимические реакции, включающие быстрые химические стадии
- •8.5. Определение порядков электрохимических реакций
- •8.6. Безбарьерные и безактивациониые электрохимические реакции
- •8.7. Кинетика реакций при конечных степенях заполнения поверхности
- •9 Диффузионная кинетика
- •9.1. Перенапряжение диффузии
- •9.2. Перенапряжение диффузии с учетом миграции
- •9.3. Поляризационные кривые при замедленной стадии диффузии
- •9.4. Окислительно-восстановительные реакции
- •9.5. Сложные окислительно-восстановительные реакции
- •9.6. Наложение перенапряжения диффузии и замедленного переноса электронов (смешанная кинетика)
- •10 Перенапряжение химической реакции
- •10.1. Перенапряжение, обусловленное предшествующей гомогенной химической реакцией в катодном процессе и последующей химической реакцией в анодном процессе
- •10.2. Общий случай электрохимической реакции с замедленной гомогенной химической стадией
- •10.3. Перенапряжение, обусловленное гетерогенными химическими стадиями
- •10.4. Зависимость плотности тока от концентрации и порядок химической реакции
- •11 Примеры различных механизмов электрохимических реакций
- •11.1. Реакция выделения водорода
- •11.2. Кинетика реакций в расплавах и твердых электролитах
- •12 Кинетика реакций электрохимического выделения металлов
- •12.1. Кинетика реакций выделения металлов на жидких катодах
- •12.2. Кинетика реакций при электроосаждении металлов на твердых электродах
- •12.3. Влияние поверхностно-активных веществ на рост кристаллов
- •12.4. Влияние природы металла и состава раствора на кинетические параметры
- •12.5. Электроосаждение металлов из расплавов
- •12.6. Электрохимическое восстановление оксидов
- •13 Анодное растворение и пассивность металлов
- •13.1. Анодное растворение металлов
- •13.2. Пассивность металлов
- •13.2.1. Теория пассивности
- •13.2.2. Кинетика процесса пассивирования
- •14 Короткозамкнутые электрохимические системы
- •14.1. Общие положения
- •14.2. Электрохимическая коррозия
- •14.2.1. Скорость коррозии металла и коррозионный потенциал
- •14.2.2. Растворение металлов под током в коррозйонноактивных средах
- •14.2.3. Коррозия технических металлов
- •14.2.4. Способы снижения скорости коррозионного процесса
- •14.3. Контактное вытеснение металлов (цементация)
- •14.3.1. Общие положения
- •14.3.2. Кинетика процесса цементации
- •14.3.3. Конечный период цементации
- •15 Параллельные электрохимические реакции
- •15.1. Условия протеканий параллельных реакций
- •15.2. Распределение плотности тока между параллельными реакциями
- •16 Основы методов исследования электрохимических реакций
- •16.1. Общие требования к методам исследования
- •16.2. Электроды, применяемые в кинетических исследованиях
- •16.3. Измерение потенциалов под током
- •16.4. Методы исследования
- •Литература
6.12.4. Измерение напряжения электрохимических систем с ионоселективными электродами
Для
измерения потенциала ионоселективного
электрода его нужно
соединить с любым электродом сравнения.
Тогда получим, например
для стеклянного электрода
(–)
Ag
AgCl,
HCl
Стекло HCl
KCl,
Hg2Cl2
Hg
(+)
a1 a2 насыщ.
φ1 φ2 φ3 φ4 φ5
выражение для напряжения:
Ер = φ5 + φ4 + φ3 + φ2 + φ1
Поскольку скачки потенциала φ5, φ1 и φ2 постоянны, а φ4 можно считать близким к нулю, то
Ер = φΣ + φ3
Где φΣ — сумма постоянных скачков потенциала.
Однако, если нужно с помощью ионоселективного электрода измерить активность а2 электролита, то небезразлично, какой из электродов сравнения будет выбран. Для схемы, изображенной выше, получим
с точностью до значения диффузионного потенциала. Если в качестве электрода сравнения взять хлорсеребряный в том же растворе, то уравнение для напряжения примет вид:
Наконец, если электродом сравнения будет водородный электрод в том же растворе, то
’’’
и водородная функция вообще будет отсутствовать. Это связано с тем, что потенциалы водородного и стеклянного электродов одинаково реагируют на изменение активности ионов водорода.
В случае ионоселективного электрода, обратимого относительно металлических ионов (например, ионов кальция)
(–) Ag | AgCl, CaCl2 | Мембрана | СаС12 | КС1, Hg2Cl2 | Hg (+)
a2 a1 насыщ.
получается та же картина. Напряжение будет определяться уравнением:
Замена каломельного электрода хлорсеребряным в том же растворе хлорида кальция приведет к выражению:
или
Если же ионоселективный электрод обратим относительно какого-нибудь аниона (например, NO3–), то схема системы с насыщенным каломельным электродом сравнения будет:
(–) Pt (H2) | HNO3 | Мембрана | HNO3 | KCl, Hg2Cl2 | Hg (+)
насыщ.
и при φд →0
Если в этом случае насыщенный каломельный электрод заменить водородным в растворе азотной кислоты
(–) Pt (H2) | НNO3 | Мембрана | HNO3 | (H2) Pt (+)
то уравнение для напряжения:
Поскольку во всех этих уравнениях значения стандартных напряжений не поддаются расчету, то активности определяют с помощью градуировочных графиков, для построения которых измеряют напряжение системы при нескольких различных концентрациях (активностях) электролита в стандартных растворах. Концентрации электролита в стандартных растворах должны быть точно определены и не должны изменяться во времени. При измерении рН растворов применяют стандартные буферные растворы с известными значениями рН. Затем строят график, откладывая по оси ординат Е, а по оси абсцисс — логарифм активности соответствующего электролита. Если получается прямая линия с углом наклона, отвечающим теории, то ионоселективный электрод является действительно обратимым. Измеряя таким электродом напряжение системы, содержащей электролит неизвестной концентрации, с помощью графика по величине Е непосредственно находят искомое значение активности.
Так как потенциал асимметрии мембранных электродов иногда изменяется во времени, то градуировочная кривая может перемещаться параллельно самой себе. Поэтому перед измерениями необходимо проверить градуировку, определив две-три точки в растворах с известными концентрациями. В связи с тем, что для практических измерений с ионоселективными электродами всегда проводится предварительная градуировка, то в принципе может быть использован любой постоянный электрод сравнения в отдельном (своем) растворе. Последнее, однако, вызывает необходимость учета или элиминирования диффузионного потенциала при изменении концентрации раствора, которое отражается на градуировочной кривой.