- •Издание училища
- •В.1. Место рлс в радиолокационной системе
- •Глава 1. Основные характеристики рлс и требования, предъявляемые к ним
- •1.1. Общие сведения
- •1.2. Состав радиолокационной информации
- •1.3. Зона обзора
- •1.4. Точность измерения координат
- •1.5. Разрешающие способности по координатам
- •1.6. Помехозащищенность
- •1.7. Информационная способность
- •1.8. Надежность
- •1.9. Электромагнитная совместимость
- •1.10. Маневренные характеристики
- •Глава 2. Дальность действия рлс в различных условиях ее работы
- •2.1. Уравнение радиолокации в режиме обзора при произвольных форме зоны обнаружения и способе обзора
- •2.1.1. Вывод уравнения радиолокации
- •2.1.2. Изодальностная зона обнаружения
- •2.1.3. Изовысотная зона обнаружения
- •2.1.4. Смешанная зона обнаружения
- •2.2. Дальность действия рлс с учетом затухания радиоволн в атмосфере
- •2.3. Дальность действия рлс в условиях активных маскирующих помех
- •2.3.1. Дальность действия рлс в условиях активных шумовых маскирующих помех
- •2.3.2. Дальность действия рлс в условиях импульсных помех
- •2.4. Дальность действия рлс в условиях маскирующих пассивных помех
- •Действия рлс при включении аппаратуры защиты в условиях отсутствия пп
- •2.5. Дальность обнаружения маловысотных целей
- •2.6. Упрощенные формы записи уравнения радиолокации
- •Глава 3. Основные характеристики радиолокационных целей
- •3.1. Общие сведения
- •3.2. Статистические модели целей
- •3.3. Оценка влияния и на вероятность обнаружения цели
- •3.3.1. Оценка влияния вида плотности распределения вероятности эпц
- •3.3.2. Оценка влияния вида энергетического спектра флюктуации отраженного сигнала
- •3.4. Оценка среднего значения эффективной поверхности радиолокационных целей
- •3.4.1. Точечные (сосредоточенные) цели
- •3.4.2. Распределенные цели
- •3.5. Энергетический спектр флюктуаций сигнала, отраженного от точечной цели
- •3.6. Энергетический спектр флюктуаций сигнала, отраженного от распределенной цели
- •Глава 4. Показатели качества и параметры обнаружения
- •4.1. Общие сведения
- •4.2. Показатели качества радиолокационного обнаружения в точке
- •4.3. Показатели качества радиолокационного обнаружения за обзор
- •4.4. Период ложной тревоги
- •4.5. Интегральные вероятности правильного обнаружения и ложной тревоги
- •4.6. Выбор значений показателей качества обнаружения
- •4.7. Параметры обнаружения и связь между ними
- •4.8. Определение требуемого значения отношения сигнал—шум на входе устройства сравнения с порогом
- •5.1. Основные отличия целей и маскирующих пассивных помех
- •5.2. Пути повышения помехозащищен-ности рлс в условиях маскирующих пассивных помех
- •5.3. Выбор структуры зондирующего сигнала при работе рлс в условиях пассивных помех
- •5.4. Способы обеспечения заданного значения 1-й слепой скорости
- •5.5. Классификация систем сдц
- •5.6. Обобщенная структурная схема и основные характеристики системы сдц
- •5.7. Система сдц с эквивалентной
- •5.7.1. Структурная схема системы сдц
- •5.7.2. Основные характеристики системы
- •5.7.3. Принципы построения элементов и устройств системы сдц
- •5.7.4. Влияние нестабильностей аппаратуры на эффективность сдц
- •5.8. Системы сдц с внутренней когерентностью на базе устройств чпк на радиочастоте
- •5.9. Системы сдц с внешней когерентностью
- •5.9.1. Система сдц с некогерентной компенсацией пп
- •5.9.2. Система сдц с помеховым гетеродином
- •5.9.3. Основные характеристики систем
- •5.10. Системы сдц на базе автокомпенсаторов
- •5.10.1. Структурная схема
- •5.10.2. Основные характеристики чпак
- •5.10.3. Требования к функциональным элементам чпак и их обеспечение
- •5.11. Фильтровые и корреляционно-фильтровые системы сдц
- •5.11.1. Фильтровые системы сдц
- •5.11.2. Корреляционно-фильтровые системы сдц
- •5.11.3. Основные характеристики систем
- •6.2.2. Шумовая автоматическая регулировка усиления
- •6.2.3. Усилители с логарифмической амплитудной характеристикой
- •6.2.4. Автоматическая регулировка порога ограничения
- •6.3. Повышение помехозащищенности за счёт увеличения плотности потока энергии зондирующего сигнала
- •6.4. Технические решения, обеспечивающие защиту рлс методом пространственной селекции
- •6.4.1. Основные пути реализации метода пространственной селекции
- •6.4.2. Уменьшение угловых размеров главного лепестка диаграммы направленности
- •6.4.3. Снижение уровня боковых лепестков
- •6.4.4. Уменьшение уровня приёма в направлениях на постановщики активных помех
- •6.5. Технические решения, обеспечивающие защиту рлс от помех по главному лепестку диаграммы направленности
- •6.6. Принципы построения систем перестройки рабочей частоты рлс
- •6.6.1. Требования к параметрам системы перестройки станции
- •6.6.2. Структурная схема спс
- •6.7. Устройства защиты рлс от импульсных помех
- •6.7.1. Виды импульсных помех
- •6.7.2. Устройства защиты от узкополосных импульсных помех
- •6.7.3. Устройства защиты от широкополосных импульсных помех
- •6.7.4. Устройства защиты от несинхронных импульсных помех
- •6.7.5. Особенности построения устройств защиты от оип
- •6.8. Принципы построения анализаторов помеховои обстановки в адаптивных рлс
- •Глава 7. Принципы построения аппаратуры пеленгации постановщиков активных помех
- •7.1 Требования предъявляемые к аппаратуре пеленгации
- •7.2. Обобщенная структурная схема и варианты технической реализации аппаратуры пеленгации
- •8.Обеспечение электромагнитной совместимости рлс
- •8.1. Пути обеспечения электромагнитной совместимости рлс
- •8.2. Технические решения, обеспечивающие ослабление неосновных излучений рлс
- •8.3. Технические решения, обеспечивающие ослабление приема по неосновным каналам
- •Глава 9. Потери в тракте приёма и выделения сигналов из помех и технические решения, обеспечивающие их снижение
- •9.1 Обобщенная структурная схема тракта приёма и выделения сигналов из помех
- •9.2. Потери в приёмной антенне
- •9.3. Потери в тракте высокой частоты на прием
- •9.3.1. Обобщенная структурная схема тракта высокой частоты импульсной рлс
- •9.3.2. Методика учета потерь в тракте высокой частоты
- •9.4. Потери за счет рассогласования частотной характеристики линейной части приемника и частотного спектра сигнала
- •9.4.1. Составляющие коэффициента потерь Lрф
- •9.4.2. Потери рассогласования, обусловленные наличием побочных каналов приема
- •Потери рассогласования,обусловленные неоптимальностью формы ачх линейной части приёмника
- •9.4.3. Потери рассогласования, обусловленные расстройкой приёмника по частоте
- •9.5. Требования к системам апч и технические решения, обеспечивающие их выполнение
- •9.6. Потери интегрирования
- •9.7. Принципы построения рециркуляторов
- •9.7.1. Общие сведении о рециркуляторах
- •9.7.2. Рециркулятор на базе ультразвуковой линии задержки
- •9.7.3. Требования к функциональным элементам рециркулятора
- •9.7.4. Многоступенчатые рециркуляторы
- •9.8. Накопители на электронно-лучевой трубке
- •9.9. Комплексирование накопителей
- •9.10. Потери. Обусловленные накоплением дополнительного шума
- •9.10.1. Причины возникновения потерь
- •9.10.2. Объединение сигналов в рлс с парциальной диаграммой направленности на приём
- •9.10.3. Накопление дополнительного шума на экране элт
- •9.10.4. Накопление дополнительного шума в вус
- •9.11. Потери за счет ограничения сигналов сверху
- •9.12. Потери за счет нестабильности порогового уровня и коэффициента усиления приёмника
- •9.13. Потери за счет нестационарности помех на входе системы обработки сигналов
- •9.13.1. Причины нестационарности помех
- •9.13.2. Стабилизация вероятности ложной тревоги в условиях отражений от протяженных источников пп
- •9.13.3. Непараметрические обнаружители
- •9.14. Потери, связанные с работой оператора
- •9.15. Методика учета потерь в тракте приёма и выделения сигналов
- •Глава 10. Обеспечение требований к параметрам зондирующего сигнала
- •10.1. Параметры зондирующего сигнала и их влияние на характеристики рлс
- •10.2. Основные типы передающих устройств и их сравнительная характеристика
- •Глава 11. Влияние способа обзора зоны обнаружения на характеристики рлс
- •11.1. Виды и способы обзора зоны
- •11.2. Сравнение способов обзора зоны обнаружения при отсутствии потерь
- •11.3. Сравнение способов обзора зоны обнаружения при наличии потерь
- •11.4. Возможности уменьшения числа парциальных каналов в трехкоординатных рлс
- •Глава 12. Обеспечение требований к точности измерения координат
- •12.1. Общие сведения об ошибках измерения. Связь между ошибками
- •12.2. Ошибки измерения дальности и технические решения, обеспечивающие их снижение
- •12.2.1. Потенциальная ошибка измерения дальности
- •12.2.2. Ошибка измерения дальности за счет особенностей распространения радиоволн
- •12.2.3. Инструментальная ошибка измерения дальности
- •12.2.4. Динамическая ошибка
- •12.3. Ошибки измерения угловых координат и технические решения, обеспечивающие их снижение
- •12.3.1. Потенциальная ошибка
- •12.3.2. Ошибки измерения угловых координат за счёт особенностей распространения радиоволн
- •12.3.3. Инструментальная ошибка измерения угловых координат
- •12.4.1. Уравнение высоты
- •К разрешающим способностям рлс по координатам
- •13.5. Реальная разрешающая способность рлс по высоте
- •13.6. Вероятность разрешения целей в группе
- •Глава 14 особенности построения рлс с широкополосными зондирующими сигналами
- •Глава is. Особенности построения рлс с электронным управлением лучом
- •Глава 16. Особенности построения мс с цифровой обработкой сигналов
- •16,3.1. Общие понятия
- •16.3.3. Устройство квантования
- •16.3.4, Параметры ацп
- •16.3.5. Типы ацп
- •16.4.1. Обнаружитель типа движущегося окна
- •16.5. Особенности построения цифровых обнаружителей
- •16.5.1. Вычислитель модуля
- •16.5.2. Цифровые накопители
- •16.7.2. Особенности технической реализации цгфп,
- •16.7,3. Особенности технической реализаций
- •16.8. Цифровые авто компенсаторы
- •Глава 1. Основные характеристики рлс и требования, предъявляемые
- •Глава 2. Дальность действия рлс в различных условиях ее работы . 22
- •Глава 3. Основные характеристики радиолокационных целей ... 43
- •Глава 4. Показатели качества и параметры обнаружения .... 59
- •Глава 5 Обеспечение требуемой помехозащищенности рлс и условиях
- •Глава 7. Принципы построения аппаратуры пеленгации постщювщиков
- •Глава 8. Обеспечение электромагнитной совместимости рлс . . . F79
- •Глава 10. Обеспеченно требований к параметрам зондирующего сигнала 22s1
- •Глава 13. Обеспечение требований к разрешающим способностям рлс
- •[6.Я. Цифровые Ёвтокомпевсаторы 345
16.4.1. Обнаружитель типа движущегося окна
Алгоритм оптимального обнаружения пачки бинарно-квантованных сигпалов представляется в виде
(16.8)
где Xi значение сигнала (0 или 1) на 1-й позиции пачки; щ -весовой коэффициент, зависящий от значений вероятностей получения нулей и единиц на 1-й позиции пачки; М— число импульсов га пачке (число позиций). Последовательность коэффициентов {п$ называют весовой функцией обнаружения.
Рис. 16.9. Обнаружитель типа движущегося
И:? (16.8) видно, что обнаружение пачки сводится к суммированию значений весовой функции па тех позициях, где Х{ = 1, и сравнению результата суммирования с порогом С, при превышении которого выдается решение об обнаружении. В связи с этим устройство, реализующее алгоритм (16.8), называют весовым бинарным обнаружителем.
327
При бинарном квантовании весовой функции обнаружения в интервале, соответствующем ширине диаграммы направленности РЛС, она будет тождественно равна единице, накопление в этом интервале становится равновесным, а алгоритм (16.8) сводятся к счету единиц и сравнению результата с цифровым порогом. Из-за отсутствия весового суммирования возникают дополнительные потери порядка 1,5 дБ, однако техническая реализация алгоритма обнаружения значительно упрощается.
Следует отметить, что в РЛС указанную процедуру необходимо осуществлять в каждом дальномерном канале. Такой канал называют обнаружителем движущегося окна [5 (], поскольку обработка осуществляется синхронно с перемещением луча по азимуту, а размер движущегося окна соответствует ширине диаграммы направленности антенны в азимутальной плоскости.
Обнаружитель может быть реализован на базе счетчикоз (рис. 16.9). Одноразрядный АЦП (квантизатор) осуществляет дискретизацию и квантование выходных сигналов амплитудного детектора. Нос седоват ел ьноетъ нулей и единиц через ключ соответствующего канала дальности поступает на сдвигающий регистр и суммирующий вход реверсивного счетчика. Число разрядов сдвигающего регистра выбирается равным числу импульсов в пачке. С каждым очередным зондированием осуществляется сдвиг содержимого регистра на один разряд вправо. При этом из последнего разряда регистра выталкивается 0 или 1. Поступая
6 е ю vi/c/ro импуяьсов,м
Рве- 16.1Q. Зависимости потерь при цифровом накоплении or числа импульсов в пачке
ружеиия и ложной тревоги
на всех позициях пачки принять одинаковыми и равными соответственно Робт и P.'iti, то вероятности правильного обнаружения и ложной тревоги в обнаружителе движущегося окна при известном угловом положении цели определяются по формулам:
на вычитающий вход реверсивного счетчика, они соответственно либо не изменяют его состояние, либо уменьшают значение имеющегося в счетчике числз на единицу. .Число, записанное в счетчике, сравнивается далее с цифровым порогом (с числом к), и в зависимости от результата сравнения на выходе обнаружителя появляется единица или нуль. Если вероятности обна-
(16.9)
328
где C;{f = M\f[j\ (М—/) !j — число сочетаний из М по /.
Формулы (16.9), (16.10) позволяют оценивать эффективность цифрового накопителя, а также определять требуемый порог квантования, обеспечивающий заданную вероятность ложной тревоги. При заданных к, M и Р,л? из (16.10) определяется Рл-п, а значение порога квантования рассчитывается по формуле (16.5).
Для каждого М существует оптимальное значение ктп- ~
ж 1,5~\'М, при котором потери минимальны. Потери при накоплении бинарно-квантованных сигналов по сравнению с аналоговым некогерентпым накоплением невелики (рис. 16.10).
16.4.2. Логический обнаружитель к из М
Обнаружитель, который по своей эффективности эквивалентен обнаружителю движущегося окна, может быть выполнен па основе логтгческих схем (рис. 16.11). Принцип его действия основан на том, что решение об обнаружении или необнаруже-нпи пачки принимается на основе анализа содержимого регистра логической схемой. Число разрядов регистра равно числу импульсов п пачке М, т. е. анализу подвергается последовательность пулей и единиц в пределах ширины диаграммы направленности антенны РЛС.
Рис. 16.11. Логический обнаружитель k из М
Конкретный вид логической схемы может быть синтезирован методами булевой алгебры с учетом обеспечения ззазешых вероятностей правильного обнаружения Ри~ш и ложной тревоги РЛг. Последние зависят от того, по какому количеству комбинаций нулей и единиц в регистре (из общего количества, равного 21") при-
ЗЭ9 -
пимается решение Об обнаружении пачки. Очевидно, чем больше таких комбинаций, тем больше вероятность правильного обнаружения, по больше и вероятность ложной тревоги. Б |49] изложена методика, позволяющая сравнительно быстро отбирать такие комбинации. Сущность ее сводится к тому, что отбор начинается с комбинаций, обеспечивающих наибольшую вероятность обнаружения, и продолжается до тех пор, пока суммарная вероятность ложной тревоги не станет равной допустимому значению.
lii.4.3. Логические обнаружители с фиксацией границ пачки (обнаружители типа 1/п — к)
Число импульсов в пачке не является постоянным и зависит от дальности, ЭПР цели, угла места цели и т. д. Это затрудняет применение оптимальных обнаружителей, которые критичны к числу импульсов в пачке. Кроме того, при большом числе импульсов в пачке реализация оптимальных алгоритмов связала с большими аппаратурными затратами. В свяли с этим на практике находят применение упрощенные методы обработки, основанные на использовании информации об увеличении плотности единиц в области наличия полезного сигнала по сравнению с областью одного шума. Обнаружители, реализующие эти методы, фиксируют только начало и конец пачки, независимо от числа импульсов в пачке М.
Начало пачки фиксируется по определенному количеству единиц I па п позициях пачки, т. е. по критерию / из п, причем п, как правило, значительно меньше М. Критерий фиксации качала пачки является одновременно и критерием обнаружения. Наибольшее
Рис. 16 12. Зависимость вероятности правильного обнаружения от отношения сиг* нал—шум для различных логик обняру- жеиия
распространение получили следующие критерии (логики обнаружения)-. 2 из 3, 3 из 3, 3 из 4. Конец пачки фиксируется по наличию серии из к пропусков (нулей) подряд. В связи с этим критерий срабатывания обнаружителя записывается в виде 1/п — к. Структурная схема обнаружителя такая же, как и на рис. 16.11. Отличие состоит в том, что число разрядов регистра п < М, а логическая схема имеет два выхода; фиксации начала ун и конца у„ пачки. Для логики обнаружения 2/3 — 2: ув = Х\Х% V х'х& =
= #i (*2 V X'i)', У* — х\хъ. где Xi— значение сигнала (0 или 1) на
330
i-й позиции пачки, I = 0, 1, 2. Вероятность правильного обнаружения зависит от отношения сигнал -шум и логики обнаружения (рис. 16.12). Часто отдают предпочтение жестким логикам, поскольку техническая реализация их значительно проще. Так, например, для логики «S/3» устройство фиксации начала пачки представляет собой одну трехввддовую схему совпадения.
16.4.4. Стабилизация вероятности ложной тревоги
Из-за нестабильностей порога квантования и коэффициентов усиления элементов приемного тракта, предшествующих цифровому обнаружителю, может сущестненно возрасти поток ложных тревог (см. гл. 9). Поэтому при цифровом обнаружении принципиально необходимо осуществлять стабилизацию вероятности ложной тревоги. В качестве схем стабилизации можно использовать ШАРУ (в УПЧ) или модифицированный знаковый обнаружитель.