
- •25.1. Общие положения 103
- •27.1. Общие положения 116
- •31.1. Общие положения 140
- •1.2. Центральное проецирование
- •1.3. Параллельное проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •3.3. Коэффициенты искажения
- •3.4. Виды аксонометрических проекций
- •4.2. Прямоугольная изометрическая проекция
- •4.3. Прямоугольная диметрическая проекция
- •4.4. Косоугольная фронтальная диметрическая проекция
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •6.2. Проекции проецирующих прямых
- •6.3. Определение натуральной величины отрезка прямой общего положения
- •6.4. Деление отрезка прямой в данном отношении
- •7.2. Пересекающиеся прямые
- •7.3. Скрещивающиеся прямые
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •10.2. Пересечение прямой линии с плоскостью
- •10.3. Условие видимости на чертеже
- •11.2. Прямая, перпендикулярная к плоскости. Теорема о проецировании прямого угла
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2. Тени от точки, линии и плоской фигуры
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2.4. Тень от диска (окружности)
- •14.1. Тень, падающая от одной фигуры на другую
- •1. Метод обратных лучей
- •14.1. Тень, падающая от одной фигуры на другую
- •14.1.1. Метод обратных лучей
- •2. Метод следа светового луча (метод сечения лучевой плоскостью)
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •16.1. Тени пересекающихся многогранников (от здания)
- •Тени пересекающихся многогранников (от здания)
- •17.1. Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени от выступов
- •18.2. Замена плоскостей проекций
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций.
- •19.2. Плоскопараллельное движение.
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций
- •19.2. Плоско-параллельное движение
- •20.1.1. Винтовая линия
- •20.2. Поверхности
- •20.2.1. Поверхности линейчатые
- •20.2.2. Поверхности линейчатые развертывающиеся
- •20.2..3. Поверхности линейчатые неразвертывающиеся
- •20.2.4. Поверхности нелинейчатые
- •20.2.5. Поверхности параллельного переноса, вращения и винтовые
- •21.1. Поверхности вращения
- •21.2.Поверхности винтовые
- •21.1. Поверхности вращения
- •21.2. Поверхности винтовые
- •22.2. Пересечение плоскостью поверхности вращения
- •23.3. Конические сечения.
- •23.3. Конические сечения
- •24.2. Пересечение прямой с поверхностью многогранника
- •24.3. Пересечение прямой с поверхностью вращения
- •25.2. Пересечение многогранников
- •25.3. Способ секущих плоскостей
- •Пересечение поверхностей
- •26.2. Способ эксцентрических сфер
- •26.3. Особые случаи пересечения. Теорема Монжа
- •27.2. Аналитический способ
- •27.3. Способ триангуляции (треугольников)
- •27.4. Способ нормального сечения
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •Список рекомендованой литературы к разделам 1‑9
- •Введение в черчение
- •29.1. Инструмент и материал
- •29.2. Форматы
- •29.3. Масштабы
- •30.3.1. Порядок заполнения основной надписи
- •30.2. Шрифты чертежные
- •Основная надпись
- •Порядок выполнения основной надписи
- •30.3.1. Порядок заполнения основной надписи
- •31.2.1. Построение касательной к окружности
- •31.2. Построение касательных и касание окружностей
- •31.2.1. Построение касательной к окружности
- •31.2.2. Касание окружностей
- •31.2.3. Построение касательных к двум окружностям
- •Сопряжения с помощью дуги окружности
- •31.2.4. Сопряжение двух прямых дугой окружности
- •31.2.5. Сопряжение дуги и прямой дугой окружности заданного радиуса
- •31.2.6. Сопряжение двух дуг дугой окружности заданного радиуса
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •33.1 Циркульные кривые
- •33.1.1 Завитки
- •33.2. Коробовые кривые
- •33.3. Лекальные кривые
- •33.3.1. Порядок вычерчивания лекальных кривых
- •33.3.2. Способы построения некоторых лекальных кривых
- •34.1. Правила и рекомендации при простановке размеров нанесение размеров
- •34.1. Правила и рекомендации при простановке размеров
3.3. Коэффициенты искажения
Искажение отрезков осей координат при их проецировании на картинную плоскость характеризуется коэффициентами искажений по аксонометрическим осям.
Коэффициентом искажения называется отношение длины аксонометрической проекции отрезка оси к его натуральной длине.
Коэффициенты искажения по осям Ooxo, Ooyo и Oozo соответственно будут равны:
;
;
.
3.4. Виды аксонометрических проекций
Принимая различное взаимное расположение натуральной системы координат и картинной плоскости и задавая разные направления проецирования, можно получить множество аксонометрических проекций, отличающихся друг от друга как направлением аксонометрических осей, так и величиной коэффициентов искажения по этим осям. В зависимости от соотношения коэффициентов искажения различают:
– ИЗОМЕТРИЧЕСКУЮ ПРОЕКЦИЮ (“изос” – равный), если коэффициенты искажения по всем трем осям равны меду собой:
Kx = Ky = Kz;
– ДИМЕТРИЧЕСКУЮ ПРОЕКЦИЮ, если коэффициенты искажения по двум любым осям равны между собой, а по третьей – отличаются от первых двух, например:
Kx Ky = Kz;
– ТРИМЕТРИЧЕСКУЮ ПРОЕКЦИЮ, если все три коэффициента искажения по осям различны:
Kx Ky Kz
В зависимости от угла, образуемого направлением проецирования s с картинной плоскостью , различают:
– прямоугольную аксонометрическую проекцию, если s ;
– косоугольную аксонометрическую
проекцию, если s
.
План:
4.1. Стандартные аксонометрические проекции
4.2. Прямоугольная изометрическая проекция
4.3. Прямоугольная диметрическая проекция
4.4. Косоугольная фронтальная диметрическая проекция
4.1. Стандартные аксонометрические проекции
Из многообразия возможных видов аксонометрических проекций ГОСТ 2.317-(СТ СЭВ 1979-79) рекомендует для применения в чертежах всех отраслей промышленности и строительства ограниченное количество таких, которые меньше искажают изображение геометрических фигур и наиболее удобны при построении.
Из прямоугольных аксонометрических проекций к ним относятся изометрическая и диметрическая проекции, из косоугольных – фронтальная и горизонтальная изометрические проекции и фронтальная диметрическая проекция.
В чертежах машиностроительной промышленности более широко применяют прямоугольную изометрию и диметрию, а также косоугольную фронтальную диметрию.
Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по осям.
4.2. Прямоугольная изометрическая проекция
В прямоугольной изометрической проекции аксонометрические оси Ooxo, Ooyo и Oozo расположены под углом 120о друг к другу, или, что удобно для вычерчивания, составляют угол 30о с горизонтальной линией (рис. 10).
Рис. 10
В прямоугольной аксонометрии сумма квадратов коэффициентов искажения равна двум, то есть
K2x = K2y = K2z = 2
Но в изометрии Kx = Ky = Kz и, следовательно, имеем:
3K2x = 2, откуда действительные коэффициенты искажения по осям равны
Kx = Ky = Kz = 0,82
Так как эти значения неудобны для подсчета размеров при построении, то стандарт рекомендует выполнять изометрическую проекцию без искажения по осям, что соответствует замене действительных коэффициентов искажения более удобными приведенными коэффициентами, равными единице:
Kx = Ky = Kz = 1
При этом изображение получается увеличенным в 1,22 раза (1/0,82 = 1,22).
Прямоугольную изометрию применяют, когда все три видимые на аксонометрическом изображении стороны предмета имеют примерно одинаковое количество особенностей, необходимых для характеристики изображаемого предмета.