
- •25.1. Общие положения 103
- •27.1. Общие положения 116
- •31.1. Общие положения 140
- •1.2. Центральное проецирование
- •1.3. Параллельное проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •3.3. Коэффициенты искажения
- •3.4. Виды аксонометрических проекций
- •4.2. Прямоугольная изометрическая проекция
- •4.3. Прямоугольная диметрическая проекция
- •4.4. Косоугольная фронтальная диметрическая проекция
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •6.2. Проекции проецирующих прямых
- •6.3. Определение натуральной величины отрезка прямой общего положения
- •6.4. Деление отрезка прямой в данном отношении
- •7.2. Пересекающиеся прямые
- •7.3. Скрещивающиеся прямые
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •10.2. Пересечение прямой линии с плоскостью
- •10.3. Условие видимости на чертеже
- •11.2. Прямая, перпендикулярная к плоскости. Теорема о проецировании прямого угла
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2. Тени от точки, линии и плоской фигуры
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2.4. Тень от диска (окружности)
- •14.1. Тень, падающая от одной фигуры на другую
- •1. Метод обратных лучей
- •14.1. Тень, падающая от одной фигуры на другую
- •14.1.1. Метод обратных лучей
- •2. Метод следа светового луча (метод сечения лучевой плоскостью)
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •16.1. Тени пересекающихся многогранников (от здания)
- •Тени пересекающихся многогранников (от здания)
- •17.1. Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени от выступов
- •18.2. Замена плоскостей проекций
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций.
- •19.2. Плоскопараллельное движение.
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций
- •19.2. Плоско-параллельное движение
- •20.1.1. Винтовая линия
- •20.2. Поверхности
- •20.2.1. Поверхности линейчатые
- •20.2.2. Поверхности линейчатые развертывающиеся
- •20.2..3. Поверхности линейчатые неразвертывающиеся
- •20.2.4. Поверхности нелинейчатые
- •20.2.5. Поверхности параллельного переноса, вращения и винтовые
- •21.1. Поверхности вращения
- •21.2.Поверхности винтовые
- •21.1. Поверхности вращения
- •21.2. Поверхности винтовые
- •22.2. Пересечение плоскостью поверхности вращения
- •23.3. Конические сечения.
- •23.3. Конические сечения
- •24.2. Пересечение прямой с поверхностью многогранника
- •24.3. Пересечение прямой с поверхностью вращения
- •25.2. Пересечение многогранников
- •25.3. Способ секущих плоскостей
- •Пересечение поверхностей
- •26.2. Способ эксцентрических сфер
- •26.3. Особые случаи пересечения. Теорема Монжа
- •27.2. Аналитический способ
- •27.3. Способ триангуляции (треугольников)
- •27.4. Способ нормального сечения
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •Список рекомендованой литературы к разделам 1‑9
- •Введение в черчение
- •29.1. Инструмент и материал
- •29.2. Форматы
- •29.3. Масштабы
- •30.3.1. Порядок заполнения основной надписи
- •30.2. Шрифты чертежные
- •Основная надпись
- •Порядок выполнения основной надписи
- •30.3.1. Порядок заполнения основной надписи
- •31.2.1. Построение касательной к окружности
- •31.2. Построение касательных и касание окружностей
- •31.2.1. Построение касательной к окружности
- •31.2.2. Касание окружностей
- •31.2.3. Построение касательных к двум окружностям
- •Сопряжения с помощью дуги окружности
- •31.2.4. Сопряжение двух прямых дугой окружности
- •31.2.5. Сопряжение дуги и прямой дугой окружности заданного радиуса
- •31.2.6. Сопряжение двух дуг дугой окружности заданного радиуса
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •33.1 Циркульные кривые
- •33.1.1 Завитки
- •33.2. Коробовые кривые
- •33.3. Лекальные кривые
- •33.3.1. Порядок вычерчивания лекальных кривых
- •33.3.2. Способы построения некоторых лекальных кривых
- •34.1. Правила и рекомендации при простановке размеров нанесение размеров
- •34.1. Правила и рекомендации при простановке размеров
24.2. Пересечение прямой с поверхностью многогранника
На рис. 145 даны треугольная пирамида и прямая n общего
положения. Построить точки встречи прямой с поверхностью. В данном случае через прямую проведена фронтально-проецирующая плоскость Р. Эта плоскость пересекает боковую поверхность пирамиды по треугольнику 1-2-3.
Фронтальная проекция фигуры сечения сливается с фронтальной проекцией секущей плоскости (рис. ). Проекции вершин треугольника 1'', 2'', 3'' находятся на пересечении фронтальных проекций ребер пирамиды S''A'', S''B'', S''C'' с фронтальным следом секущей плоскости РV.
Горизонтальные проекции 1',2',3' точек сечения находятся по линиям связи (рис. 145).
Рис. 138
Соединяя найденные точки, получим горизонтальную проекцию фигуры сечения.
Прямая n, принадлежащая, как и треугольник 1-2-3, плоскости P, пересекается со сторонами этого треугольника в точках M и N, которые и являются искомыми точками встречи прямой с поверхностью пирамиды. По горизонтальным проекциям точек М и N (M',N') с помощью линий связи находим их фронтальные проекции M”и N”.
При определении видимости отдельных частей прямой n при проецировании этой прямой на плоскости H и V следует учесть видимость граней пирамиды на этих плоскостях проекций.
24.3. Пересечение прямой с поверхностью вращения
1. На рис. 146 даны цилиндр и прямая n общего положения.
Построить точки встречи прямой с поверхностью.
В данном случае через прямую удобнее провести горизонтально-проецирующую плоскость Р, которая рассечет цилиндр по прямоугольнику. Точки А и В будут искомые.
2. На рис. 147 даны конус и прямая m, перпендикулярная плоскости H. Построить точки встречи прямой с поверхностью.
В данном примере через прямую удобнее провести горизонтально-проецирующую плоскость Р, проходящую через вершину конуса, которая рассечет конус по треугольнику. Точки С и Д будуò искомые.
3. На рис. 148 даны шар и прямая l, параллельная горизонтальной плоскости проекций. Построение точек встречи прямой с поверхностью ясно из чертежа.
4. На рис. 149 даны тело вращения и прямая n общего положения, пересекающая ось тела. Построить точки встречи прямой с поверхностью.
Через заданную прямую проводим горизонтально-проецирующую плоскость Р и вращением вокруг оси поверхности совмещаем ее (вместе с прямой) с главной меридиональной плоскостью N. Находим смещенное положение n1 прямой n и смещенные проекции А1 и В1 точек А и В. Далее находим точки встречи на основных проекциях.
Рис. 139 Рис. 140
Рис. 141 Рис. 142
План:
25.1. Общие положения
25.2. Пересечение многогранников
25.3. Способ секущих плоскостей
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
25.1. Общие положения
В пересечении поверхностей получаются плоские или пространственные линии, которые рассматриваются как множество точек, принадлежащих одновременно обеим поверхностям. Обычно линию пересечения двух поверхностей строят по ее отдельным точкам.
Общим способом построения этих точек является способ поверхностей-посредников:
– секущих плоскостей;
– сферических поверхностей.
Каким бы способом ни производилось построение линии пересечения поверхностей, при нахождении точек этой линии необходимо соблюдать определенную последовательность.
1. Для построения линий пересечения выбирают вспомогательную плоскость (или поверхность) с таким расчетом, чтобы в пересечении с каждой из заданных поверхностей получились простые линии: прямые или окружности.
2. Далее обе поверхности пересекают этой вспомогательной плоскостью (или поверхностью) и определяют линию пересечения сначала с одним телом, а затем – с другим. В пересечении этих линий находят общие точки:
в первую очередь – опорные (высшую, низшую и т.д.), так как они всегда позволяют видеть, в каких пределах расположены проекции линии пересечения, и где между ними имеет смысл определять промежуточные точки для более точного построения линии пересечения поверхностей;
затем – промежуточные.
3. Найденные точки соединяют ломаной или плавной кривой, которая будет искомой линией пересечения заданных поверхностей.
4. Определение видимости линии пересечения производят отдельно для каждого участка, ограниченного точками видимости, при этом видимость всего участка совпадает с видимостью какой-нибудь случайной точки этого участка.
На рис. 150 показано построение точек 1 и 2 линии пересечения; K и K1 – пересекающиеся поверхности; P – одна из вспомогательных секущих плоскостей.
Рис. 143