
- •25.1. Общие положения 103
- •27.1. Общие положения 116
- •31.1. Общие положения 140
- •1.2. Центральное проецирование
- •1.3. Параллельное проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •3.3. Коэффициенты искажения
- •3.4. Виды аксонометрических проекций
- •4.2. Прямоугольная изометрическая проекция
- •4.3. Прямоугольная диметрическая проекция
- •4.4. Косоугольная фронтальная диметрическая проекция
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •6.2. Проекции проецирующих прямых
- •6.3. Определение натуральной величины отрезка прямой общего положения
- •6.4. Деление отрезка прямой в данном отношении
- •7.2. Пересекающиеся прямые
- •7.3. Скрещивающиеся прямые
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •10.2. Пересечение прямой линии с плоскостью
- •10.3. Условие видимости на чертеже
- •11.2. Прямая, перпендикулярная к плоскости. Теорема о проецировании прямого угла
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2. Тени от точки, линии и плоской фигуры
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2.4. Тень от диска (окружности)
- •14.1. Тень, падающая от одной фигуры на другую
- •1. Метод обратных лучей
- •14.1. Тень, падающая от одной фигуры на другую
- •14.1.1. Метод обратных лучей
- •2. Метод следа светового луча (метод сечения лучевой плоскостью)
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •16.1. Тени пересекающихся многогранников (от здания)
- •Тени пересекающихся многогранников (от здания)
- •17.1. Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени от выступов
- •18.2. Замена плоскостей проекций
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций.
- •19.2. Плоскопараллельное движение.
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций
- •19.2. Плоско-параллельное движение
- •20.1.1. Винтовая линия
- •20.2. Поверхности
- •20.2.1. Поверхности линейчатые
- •20.2.2. Поверхности линейчатые развертывающиеся
- •20.2..3. Поверхности линейчатые неразвертывающиеся
- •20.2.4. Поверхности нелинейчатые
- •20.2.5. Поверхности параллельного переноса, вращения и винтовые
- •21.1. Поверхности вращения
- •21.2.Поверхности винтовые
- •21.1. Поверхности вращения
- •21.2. Поверхности винтовые
- •22.2. Пересечение плоскостью поверхности вращения
- •23.3. Конические сечения.
- •23.3. Конические сечения
- •24.2. Пересечение прямой с поверхностью многогранника
- •24.3. Пересечение прямой с поверхностью вращения
- •25.2. Пересечение многогранников
- •25.3. Способ секущих плоскостей
- •Пересечение поверхностей
- •26.2. Способ эксцентрических сфер
- •26.3. Особые случаи пересечения. Теорема Монжа
- •27.2. Аналитический способ
- •27.3. Способ триангуляции (треугольников)
- •27.4. Способ нормального сечения
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •Список рекомендованой литературы к разделам 1‑9
- •Введение в черчение
- •29.1. Инструмент и материал
- •29.2. Форматы
- •29.3. Масштабы
- •30.3.1. Порядок заполнения основной надписи
- •30.2. Шрифты чертежные
- •Основная надпись
- •Порядок выполнения основной надписи
- •30.3.1. Порядок заполнения основной надписи
- •31.2.1. Построение касательной к окружности
- •31.2. Построение касательных и касание окружностей
- •31.2.1. Построение касательной к окружности
- •31.2.2. Касание окружностей
- •31.2.3. Построение касательных к двум окружностям
- •Сопряжения с помощью дуги окружности
- •31.2.4. Сопряжение двух прямых дугой окружности
- •31.2.5. Сопряжение дуги и прямой дугой окружности заданного радиуса
- •31.2.6. Сопряжение двух дуг дугой окружности заданного радиуса
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •33.1 Циркульные кривые
- •33.1.1 Завитки
- •33.2. Коробовые кривые
- •33.3. Лекальные кривые
- •33.3.1. Порядок вычерчивания лекальных кривых
- •33.3.2. Способы построения некоторых лекальных кривых
- •34.1. Правила и рекомендации при простановке размеров нанесение размеров
- •34.1. Правила и рекомендации при простановке размеров
20.1.1. Винтовая линия
Пространственная кривая, широко применяемая в технике.
Цилиндрическая винтовая линия – пространственная кривая, получающаяся в результате двойного равномерного движения точки: вращения вокруг оси и поступательного движения вдоль прямой, параллельной этой оси (рис. 110).
Рис. 103
p – шаг винтовой линии или расстояние между двумя ее соседними витками в направлении, параллельном оси i. Шаг определяет величину перемещения точки в направлении оси за один оборот этой точки вокруг оси.
Проекция цилиндрической винтовой линии на горизонтальную плоскость проекций (при i H) – окружность, на фронтальную плоскость проекций – синусоида.
Отрезок [1o1o1] – развертка цилиндрической винтовой линии.
o – угол подъема винтовой линии.
Цилиндрические винтовые линии бывают правые и левые. Основание для такого деления – направление движения точки, спускающейся по винтовой линии. Если проекция этого направления на плоскость, перпендикулярную к оси винтовой линии, совпадает с направлением движения часовой стрелки – винтовая линия ПРАВАЯ. В противном случае – ЛЕВАЯ.
Коническая винтовая линия – пространственная кривая, получающаяся в результате двойного равномерного движения точки: вращения вокруг оси и поступательного движения вдоль прямой, пересекающейся с этой осью (рис. 111).
Рис. 104
При i H горизонтальная проекция конической винтовой линии – архимедова спираль, фронтальная – затухающая синусоида.
20.2. Поверхности
С житейской точки зрения поверхность – внешняя сторона предметов. Так утверждают толковые словари. Евклид: “Поверхность есть то, что имеет только длину и ширину”.
В технической практике принято рассматривать образование поверхности (как и линии) с позиций кинематики – движения.
ПОВЕРХНОСТЬ – это множество последовательных положений движущейся линии – образующей.
Образующая может сохранять свою форму или изменять ее – деформироваться. Закон перемещения образующей определяется направляющими линиями, по которым скользит образующая и характером движения образующей. Например, поверхности Каталана (названы так по имени бельгийского ученого, их исследовавшего), или – поверхности с плоскостью параллелизма. Прямолинейная образующая “a” перемещается – скользит по двум направляющим – “n” и “m”, оставаясь параллельной плоскости параллелизма .
Для изображения поверхности на чертеже, используют КАРКАС – множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае хотя бы одна линия каркаса. Проекции каркаса можно построить, если известен определитель поверхности.
ОПРЕДЕЛИТЕЛЬ ПОВЕРХНОСТИ – совокупность независимых условий, однозначно задающих поверхность.
Различают две части определителя:
– геометрическая часть указывает на геометрические фигуры (точки, линии, поверхности), с помощью которых образовывается поверхность; обозначается (Г);
– алгоритмическая (описательная) часть содержит указания о характере изменения образующей и законе ее перемещения; обозначается [A].
Таким образом, определитель пишется в следующей форме:
(Г)[A]
Определитель находят, исходя из кинематического способа образования поверхности. Например, для поверхностей Каталана:
(m,n)[a ]
Для задания этих поверхностей на эпюре Монжа достаточно указать проекции направляющих m и n и положение плоскости параллелизма (рис. 112).
Рис. 105
В геометрическую часть определителя не записывают образующую a. Поверхность линейчатая (образующая – прямая линия). Поэтому априорно известно, что а – прямая.
В алгоритмической части содержится указание, что поверхность Каталана является поверхностью с плоскостью параллелизма. Поэтому в геометрическую часть определителя не записывают также и плоскость параллелизма.