
- •25.1. Общие положения 103
- •27.1. Общие положения 116
- •31.1. Общие положения 140
- •1.2. Центральное проецирование
- •1.3. Параллельное проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •2.1. Инвариантные свойства параллельного проецирования
- •2.2. Прямоугольное (ортогональное) проецирование
- •3.3. Коэффициенты искажения
- •3.4. Виды аксонометрических проекций
- •4.2. Прямоугольная изометрическая проекция
- •4.3. Прямоугольная диметрическая проекция
- •4.4. Косоугольная фронтальная диметрическая проекция
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •5.1. Комплексный чертеж точки
- •5.2. Проекции прямых общего положения
- •6.2. Проекции проецирующих прямых
- •6.3. Определение натуральной величины отрезка прямой общего положения
- •6.4. Деление отрезка прямой в данном отношении
- •7.2. Пересекающиеся прямые
- •7.3. Скрещивающиеся прямые
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •8.1.1. Проекции плоскостей уровня
- •8.1.2. Проекции проецирующих плоскостей
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •9.1. Взаимное расположение двух плоскостей
- •9.2. Пересечение плоскостей общего положения
- •10.2. Пересечение прямой линии с плоскостью
- •10.3. Условие видимости на чертеже
- •11.2. Прямая, перпендикулярная к плоскости. Теорема о проецировании прямого угла
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •12.1. Перпендикулярные плоскости
- •12.2. Перпендикулярные прямые
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2. Тени от точки, линии и плоской фигуры
- •13.2.1. Падающая тень от точки
- •13.2.2. Падающая тень от прямой линии
- •13.2.3. Тень от плоской фигуры
- •13.2.4. Тень от диска (окружности)
- •14.1. Тень, падающая от одной фигуры на другую
- •1. Метод обратных лучей
- •14.1. Тень, падающая от одной фигуры на другую
- •14.1.1. Метод обратных лучей
- •2. Метод следа светового луча (метод сечения лучевой плоскостью)
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •15.1. Тени геометрических тел
- •15.1.1 Тени многогранников
- •15.1.2. Тени цилиндра
- •15.1.3. Тени конуса
- •16.1. Тени пересекающихся многогранников (от здания)
- •Тени пересекающихся многогранников (от здания)
- •17.1. Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени на фасадах зданий
- •17.1.1. Построение теней в нишах
- •Тени от выступов
- •18.2. Замена плоскостей проекций
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций.
- •19.2. Плоскопараллельное движение.
- •19.1. Вращение вокруг оси, перпендикулярной плоскости проекций
- •19.2. Плоско-параллельное движение
- •20.1.1. Винтовая линия
- •20.2. Поверхности
- •20.2.1. Поверхности линейчатые
- •20.2.2. Поверхности линейчатые развертывающиеся
- •20.2..3. Поверхности линейчатые неразвертывающиеся
- •20.2.4. Поверхности нелинейчатые
- •20.2.5. Поверхности параллельного переноса, вращения и винтовые
- •21.1. Поверхности вращения
- •21.2.Поверхности винтовые
- •21.1. Поверхности вращения
- •21.2. Поверхности винтовые
- •22.2. Пересечение плоскостью поверхности вращения
- •23.3. Конические сечения.
- •23.3. Конические сечения
- •24.2. Пересечение прямой с поверхностью многогранника
- •24.3. Пересечение прямой с поверхностью вращения
- •25.2. Пересечение многогранников
- •25.3. Способ секущих плоскостей
- •Пересечение поверхностей
- •26.2. Способ эксцентрических сфер
- •26.3. Особые случаи пересечения. Теорема Монжа
- •27.2. Аналитический способ
- •27.3. Способ триангуляции (треугольников)
- •27.4. Способ нормального сечения
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •28.1. Способ раскатки
- •28.2. Приближенные построения разверток
- •Список рекомендованой литературы к разделам 1‑9
- •Введение в черчение
- •29.1. Инструмент и материал
- •29.2. Форматы
- •29.3. Масштабы
- •30.3.1. Порядок заполнения основной надписи
- •30.2. Шрифты чертежные
- •Основная надпись
- •Порядок выполнения основной надписи
- •30.3.1. Порядок заполнения основной надписи
- •31.2.1. Построение касательной к окружности
- •31.2. Построение касательных и касание окружностей
- •31.2.1. Построение касательной к окружности
- •31.2.2. Касание окружностей
- •31.2.3. Построение касательных к двум окружностям
- •Сопряжения с помощью дуги окружности
- •31.2.4. Сопряжение двух прямых дугой окружности
- •31.2.5. Сопряжение дуги и прямой дугой окружности заданного радиуса
- •31.2.6. Сопряжение двух дуг дугой окружности заданного радиуса
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •32.1.Вычерчивание контуров деталей
- •32.2. Архитектурные обломы
- •33.1 Циркульные кривые
- •33.1.1 Завитки
- •33.2. Коробовые кривые
- •33.3. Лекальные кривые
- •33.3.1. Порядок вычерчивания лекальных кривых
- •33.3.2. Способы построения некоторых лекальных кривых
- •34.1. Правила и рекомендации при простановке размеров нанесение размеров
- •34.1. Правила и рекомендации при простановке размеров
13.2.3. Тень от плоской фигуры
(непрозрачной пластинки)
Чтобы построить падающую тень от плоской фигуры, ограниченной многоугольником, достаточно построить тени, падающие от всех сторон многоугольника.
На рисунке 82 построена тень, падающая от треугольника АВС на плоскости проекций H и V. Тень от вершины А падает на плоскость V, а от вершины В и вершины С – на плоскость Н. Следовательно, тень от стороны ВС падает на одну плоскость Н и представляет прямую линию, а тени от сторон АВ и АС падают на две плоскости и представляют ломаные линии.
Рис. 82
Падающие тени от сторон АВ и АС можно построить при помощи промежуточных точек (как на чертеже 81) или при помощи мнимой тени (АT'), падающей от точки А на заднюю полуплоскость Н. Получив треугольник АTHВTHСTH, определяем на оси ОХ точки перелома 1 и 2 падающей тени и соединяем их с действительной тенью АTV от точки А на плоскости V. Сторона плоской фигуры, обращенная к теневому столбу, находится в тени, то есть у плоских фигур следует различать освещенную и неосвещенную стороны. Иначе говоря, плоская фигура всегда имеет собственную тень.
Для выяснения освещенности сторон плоскости треугольника применяем следующий прием: обходя на исследуемой проекции периметр треугольника по часовой стрелке, замечаем порядок букв, обозначающих вершины, и сопоставляем с порядком букв, который получается при обходе по часовой стрелке контура падающей тени. Совпадение порядка букв обозначает, что на данной проекции видима освещенная сторона треугольника, несовпадение – что видима неосвещенная сторона плоскости.
На рисунке контур падающей тени при его обходе по часовой стрелке дает порядок букв АT''СT''ВT''. Такой же порядок (А''С''В'') получается на фронтальной проекции. Следовательно, на V видима освещенная сторона. Горизонтальная проекция имеет обратный порядок букв (А'В'С'). Это значит, что на горизонтальной проекции к нам обращена неосвещенная сторона плоскости треугольника (сторона, находящаяся в собственной тени).
Этим же приемом можно пользоваться в аксонометрии (рис. 83).
Рис. 83
13.2.4. Тень от диска (окружности)
Если плоская фигура, бросающая тень, ограничена кривой линией, то лучи, проходящие через точки этой кривой, образуют цилиндрическую лучевую поверхность. В пересечении с плоскостью, на которую падает тень, эта поверхность дает контур падающей тени данной фигуры.
Если плоскость фигуры параллельна плоскости, на которую падает тень, то тень равна самой фигуре (так как равны параллельные между собой основания цилиндра).
На рис. 84 показано построение тени от круга, параллельного плоскости H, на плоскость H. Контуром тени является окружность тог же радиуса. Для построения тени достаточно найти тень от центра С.
Рис. 84
Для построения тени, падающей от кривой линии на произвольно расположенную плоскость, можно применить один из двух способов.
1. На кривой линии намечается достаточно большое число точек, от которых строится падающая тень. Полученные точки (падающей тени) соединяются между собой плавной кривой линией.
2. Около кривой линии описывается многоугольник, строится падающая тень от многоугольника и в нее вписывается тень кривой линии.
На рис. 85 для построения падающей тени от круга, параллельного плоскости V, на плоскость Н использован описанный около него квадрат АBCD. Сначала строится падающая тень от сторон квадрата, его диагоналей и линий, проходящих через центр С параллельно сторонам квадрата, а затем вписывается в полученный параллелограмм кривая (эллипс). На рисунке эллипс проходит через восемь точек, принадлежащих одновременно падающим теням от окружности, сторон и диагоналей квадрата.
Если тень от кривой линии падает на две пересекающиеся плоскости, то она будет иметь излом на линии пересечения плоскостей.
Рис. 85
План: