
- •План работы
- •Вопросы к экзамену
- •Метрические шкалы измерения признаков.
- •Абсолютная и относительная частота и вероятность случайного события.
- •Совместные и несовместные случайные события. Вероятность суммы несовместных событий.
- •Зависимые и независимые случайные события. Вероятность произведения независимых случайных событий.
- •Дискретные и непрерывные случайные величины. Квантование.
- •§1. Дискретная случайная величина. Закон распределения вероятностей дискретной случайной величины
- •§2. Непрерывная случайная величина, способы ее задания
- •Гистограмма и полигон распределения случайной величины.
- •Меры центральной тенденции, (мода, медиана, среднее арифметическое).
- •Часть I. Основы измерения и количественного описания данных
- •Виды квантилей.
- •Характеристики рассеивания случайной величины (размах, дисперсия, стандартное отклонение, коэффициент вариации).
- •Асимметрия и эксцесс распределения случайной величины.
- •Свойства нормального распределения случайной величины.
- •Стандартное нормальное распределение. Стандартизация распределений.
- •Генеральная совокупность и выборка.
- •Основные способы формирования выборки.
- •Проверка выборки на наличие аномальных значений.
- •Основные правила стандартизации психодиагностических методик.
- •Шкала z-оценок. (???)
- •Шкалы, производные от шкалы z-оценок.
- •Шкала стенов.
-
Основные правила стандартизации психодиагностических методик.
091208-matmetody.txt
Стандартизацией психодиагностических методов называется процедура получения шкалы, позволяющей сравнивать индивидуальный результат по тесту с результатами большой группы.
с. 47 (54)
Тестовые шкалы разрабатываются для того, чтобы оценить индивидуальный результат тестирования путем сопоставления его с тестовыми нормами, полученными на выборке стандартизации. Выборка стандартизации специально формируется для разработки тестовой шкалы — она должна быть репрезентативна генеральной совокупности, для которой планируется применять данный тест. Впоследствии при тестировании предполагается, что и тестируемый, и выборка стандартизации принадлежат одной и той же генеральной совокупности.
Исходным принципом при разработке тестовой шкалы является предположение о том, что измеряемое свойство распределено в генеральной совокупности в соответствии с нормальным законом. Соответственно, измерение в тестовой шкале данного свойства на выборке стандартизации также должно обеспечивать нормальное распределение. Если это так, то тестовая шкала является метрической — точнее, равных интервалов. Если это не так, то свойство удалось отразить в лучшем случае — в шкале порядка. Естественно, что большинство стандартных тестовых шкал являются метрическими, что позволяет более детально интерпретировать результаты тестирования — с учетом свойств нормального распределения — и корректно применять любые методы статистического анализа. Таким образом, основная проблема стандартизации теста заключается в разработке такой шкалы, в которой распределение тестовых показателей на выборке стандартизации соответствовало бы нормальному распределению.
Исходные тестовые оценки — это количество ответов на те или иные вопросы теста, время или количество решенных задач и т. д. Они еще называются первичными, или «сырыми» оценками. Итогом стандартизации являются тестовые нормы — таблица пересчета «сырых» оценок в стандартные тестовые шкалы.
Существует множество стандартных тестовых шкал, основное назначение которых — представление индивидуальных результатов тестирования в удобном для интерпретации виде. Некоторые из этих шкал представлены на рис. 5.5. Общим для них является соответствие нормальному распределению, а различаются они только двумя показателями: средним значением и масштабом (стандартным отклонением — о), определяющим дробность шкалы.
Общая последовательность стандартизации (разработки тестовых норм — таблицы пересчета «сырых» оценок в стандартные тестовые) состоит в следующем:
-
определяется генеральная совокупность, для которой разрабатывается методика и формируется репрезентативная выборка стандартизации;
-
по результатам применения первичного варианта теста строится рас пределение «сырых» оценок;
-
проверяют соответствие полученного распределения нормальному за кону;
-
если распределение «сырых» оценок соответствует нормальному, про изводится линейная стандартизация;
-
если распределение «сырых» оценок не соответствует нормальному, то возможны два варианта:
-
перед линейной стандартизацией производят эмпирическую норма лизацию;
-
проводят нелинейную нормализацию.
Проверка распределения «сырых» оценок на соответствие нормальному закону производится при помощи специальных критериев, которые мы рассмотрим далее в этой главе.
Линейная стандартизация заключается в том, что определяются границы интервалов «сырых» оценок, соответствующие стандартным тестовым показателям. Эти границы вычисляются путем прибавления к среднему «сырых» оценок (или вычитания из него) долей стандартных отклонений, соответствующих тестовой шкале.
Тестовые нормы — таблица пересчета «сырых» баллов в стены
Стены |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
«Сырые» баллы |
<11 |
11-13 |
14-16 |
17-19 |
20-22 |
23-25 |
26-28 |
29-31 |
32-34 |
>34 |
Пользуясь этой таблицей тестовых норм индивидуальный результат («сырой» балл) переводят в шкалу стенов, что позволяет интерпретировать выраженность измеряемого свойства.
Эмпирическая нормализация применяется, когда распределение «сырых» баллов отличается от нормального. Она заключается в изменении содержания тестовых заданий. Например, если «сырая» оценка — это количество задач, решенных испытуемыми за отведенное время, и получено распределение с правосторонней асимметрией, то это значит, что слишком большая доля испытуемых решает больше половины заданий. В этом случае необходимо либо добавить более трудные задания, либо сократить время решения.
Нелинейная нормализация применяется, если эмпирическая нормализация невозможна или нежелательна, например, с точки зрения затрат времени и ресурсов. В этом случае перевод «сырых» оценок в стандартные производится через нахождение процентильных границ групп в исходном распределении, соответствующих процентильным границам групп в нормальном распределении стандартной шкалы. Каждому интервалу стандартной шкалы ставится в соответствие такой интервал шкалы «сырых» оценок, который содержит ту же процентную долю выборки стандартизации. Величины долей определяются по площади под единичной нормальной кривой, заключенной между соответствующими данному интервалу стандартной шкалы г-оценками.
Например, для того чтобы определить, какой «сырой» балл должен соответствовать нижней границе стена 10, необходимо сначала выяснить, какому г-значению соответствует эта граница (z = 2). Затем по таблице нормального распределения (приложение 1) надо определить, какая доля площади под нормальной кривой находится правее этого значения (0,023). После этого определяется, какое значение отсекает 2,3% наибольших значений «сырых» баллов выборки стандартизации. Найденное значение и будет соответствовать границе 9 и 10 стена.
Изложенные основы психодиагностики позволяют сформулировать математически обоснованные требования к тесту. Тестовая методика должна содержать:
-
описание выборки стандартизации;
-
характеристику распределения «сырых» баллов с указанием среднего и стандартного отклонения;
-
наименование, характеристику стандартной шкалы;
-
тестовые нормы — таблицы пересчета «сырых» баллов в шкальные.