
- •Введение. История развития генетики
- •Предмет генетики
- •2. Краткая история развития представлений о наследственности
- •3. Вклад ученых в развитие генетики
- •4. Вклад белорусских ученых в развитие генетики
- •Основными направлениями работы в настоящее время исследований являются:
- •Основные научные и практические достижения: Исследовательские гранты
- •Продукция и услуги:
- •Материальные основы наследственности Лекция 3 Клетка как основа наследственности и воспроизведения
- •Клеточные и неклеточные формы организации живого: эукариоты, прокариоты, вирусы
- •Нуклеиновые кислоты. Структурная модель днк Дж. Уотсона и ф. Крика.
- •Литература
- •2. Наднуклеосомная укладка днк
- •3. Хромомерная организация хромосом
- •4. Митотические хромосомы
- •5. Кариотип и идиограмма
- •Материальные основы наследственности
- •2.Непрямое деление клетки. Амитоз. Эндомитоз
- •3. Мейоз и его значение
- •4. Краткий обзор этапов гаметогенеза
- •Закономерности наследования признаков
- •Лекция 6
- •Наследование при моногибридных и
- •Полигибридных скрещиваниях
- •1. Цели и задачи генетического анализа
- •2.Генетическая символика
- •3. Первый закон г. Менделя – закон единообразия гибридов первого поколения
- •4. Второй закон Менделя
- •5. Неполное доминирование и кодоминирование
- •6. Анализирующее (реципрокное) скрещивание
- •7. Дигибридные скрещивания. Тригибридное скрещивание
- •Закономерности наследования признаков Лекция 7 Взаимодействие генов
- •1. Типы взаимодействия неаллельных генов: комплементарность, эпистаз, полимерия. Гены – модификаторы.
- •Наследование окраски цветков у Lathyrus odoratus при взаимодействии двух пар генов
- •Наследование формы плода у Cucurbita pepo при взаимодействии двух пар генов
- •Наследование окраски глаз у Drosophila при взаимодействии двух пар генов
- •Эпистаз у лошадей
- •Рецессивный эпистаз у мышей
- •Наследование и изменчивость длины початков (в сантиметрах) у Zea mays в f1и f2
- •Наследование формы стручка у Capsella bursa pastoris при взаимодействии двух пар генов
- •2. Пенетрантность и экрессивность. Норма реакции. Плейотропный эффект гена.
- •Закономерности наследования признаков Лекция 8-9 Генетика пола и наследование признаков, сцепленных с полом. Сцепление генов и кроссинговер. Нехромосомное (цитоплазматическое) наследование
- •1.Пол как признак. Половой диморфизм. Первичные и вторичные половые признаки.
- •2. Определение пола.
- •Половые различия между самкой и самцом у морского червя Bonellia viridis
- •3. Гинандроморфы, интерсексы, гермафродиты и другие половые отклонения
- •Билатеральный гинандроморф y Drosophila melanogastei
- •4. Наследование признаков сцепленных с полом.
- •5.Сцепление генов и кроссинговер. Генетические доказательства перекреста хромосом
- •6. Частота кроссинговера и линейное расположение генов в хромосоме. Цитологические доказательства кроссинговера
- •7.Митотический (соматический) кроссинговер. Факторы, влияющие на кроссинговер
- •8. Нехромосомное (цитоплазматическое) наследование
- •Молекулярные основы наследственности (4 часа)
- •2.Способы передачи наследственной информации у бактерий
- •3. Репликация днк
- •Модели репликации днк:
- •Строение репликационной вилки
- •Расположение основных белков в репликационной вилке
- •4. Репарация днк
- •Молекулярные основы наследственности (4 часа)
- •2. Генетический код
- •3. Трансляция
- •4. Передача информации в клетке
- •Изменчивость (6 часов) Лекция 12 Изменчивость, комбинативная и мутационная изменчивость
- •1. Классификация изменчивости. Понятие о наследственной и ненаследственной изменчивости.
- •1.1 Изменчивость наследственного материала
- •1.2 Ненаследственная изменчивость
- •1.3 Наследственная изменчивость
- •2. Мутационная теория и классификация мутаций
- •Мутации у различных организмов
- •3. Генеративные и соматические мутации. Прямые и обратные мутации
- •4. Множественные аллели
- •5. Условные мутации
- •Изменчивость (6 часов) Лекция 13-14 Мутации: генные, хромосомные, геномные. Модификационная изменчивость
- •1. Генные мутации
- •2. Хромосомные перестройки
- •2.1. Делеции
- •2.2. Дупликации
- •2.3. Инверсии
- •2.3. Транслокации
- •3. Геномные мутации. Полиплоидия
- •4. Автополиплоидия
- •Диплоидный (а), триплоидный (б) и тетраплоидный (в) арбузы
- •Образование растения Raphanobrassica в результате скрещивания редьки и капусты. Следует обратить внимание на форму плода у родителей и гибрида
- •5. Аллополиплоидия (амфиполиплоидия)
- •6. Анеуплоидия
- •7. Гаплоидия
- •8. Системные мутации. Спонтанные мутации
- •9.Закон гомологических рядов наследственной изменчивости н.И. Вавилова
- •10. Ненаследственная изменчивость
- •Внизу -стрелолист с надводными, плавающими и подводными листьями
- •Литература
- •Генетические основы онтогенеза (2 часа) Лекция 15 Онтогенез – как реализация генетической информации
- •1. Дифференцировка и детерминация
- •2.Эпигеномная наследственность
- •3. Транскрипция и амплификация генов в оогенезе
- •4. Дифференциальная активность генов в онтогенезе
- •5. Роль генетических факторов в определении продолжительности жизни
- •6. Молекулярные основы процесса старения и генетическая картина онтогенеза
- •Литература
- •1. Генетическая структура популяций. Типы популяций
- •2. Генетическая структура популяции апомиктов
- •3. Генетическая структура популяции самоопылителей
- •4. Генетическая структура популяций перекрестноразмножающихся организмов
- •Основные факторы генетической динамики популяций
- •Литература
- •Генетика человека (4 часа) Лекции 17, 18 Человек как объект генетических исследований
- •1. Человек как объект генетических исследований
- •2. Генеалогический метод
- •Составление родословной
- •Генетический анализ родословной
- •3.Близнецовый метод
- •4. Популяционно-статистический метод
- •5. Цитогенетический метод
- •6. Метод генетики соматических клеток
- •7. Биохимический метод
- •8. Молекулярно-генетический метод
- •9. Видимое строение хромосом человека и их морфология. Классификация и тонкая структура хромосомы
- •Генетические основы селекции (6 часов)
- •2.Исходный материал в селекции
- •3.Системы скрещивания в селекции растений и животных
- •4.Явление гетерозиса. Генетические механизмы гетерозиса.
- •Литература
- •2. Индивидуальный и массовый отборы
- •3. Подбор
- •Литература
- •Основы биометрии (8 часов) Данные в биологии (2 часа)
- •Описательная статистика (2 часа)
- •Основы дисперсионного анализа. Корреляционный анализ (4 часа)
4. Автополиплоидия
Полиплоиды, возникающие на основе умножения идентичных наборов хромосом, т.е. наборов хромосом того же вида, называют автополиплоидами.
Особенности мейоза автополиплоидов. В норме, у диплоидов, в профазе мейоза образуются биваленты, у тетраплоида в профазе кроме бивалентов образуются триваленты, униваленты и квадриваленты. У диплоида Аа (2п) образуются гаметы А и а в соотношении 1:1. У тетраплоида ААаа (4п) расхождение гомологичных хромосом возможно в соотношениях 2:2, 3:1; 1:3, 4:0; 0:4.
Автотетраплоид, гетерозиготный по аллелям АА/аа образует три типа гамет в отношении 1АА:4Аа:1аа.
|
1АА |
4Аа |
1аа |
1АА |
1АААА |
4АААа |
1AAaa |
4Аа |
4АААа |
16 ААаа |
4Аааа |
1аа |
1AAaa |
4Аааа |
1aaaa |
Расщепление вместо 3:1 в F2, будет 35:1, т.е. при моногибридном скрещивании вероятность появления гомозиготных рецессивных форм во много раз ниже, чем у диплоидов. Поэтому селекционеру отбор по признакам рациональнее вести на низком уровне плоидности. Кроме правильного расхождения хромосом в мейозе у автотетраплоида возможно также расхождение хромосом в соотношении 3:1 и 4:0. При этом возникнут гаметы ААа и а, Ааа и А, а также ААаа и 0. Часть таких гамет
Диплоидный (а), триплоидный (б) и тетраплоидный (в) арбузы
нежизнеспособна. Тетраплоиды чаще всего имеют большую вегетативную массу (листья, пыльники, семена). Увеличены размеры клеток.
Однако, может резко уменьшиться плодовитость (до 5% от нормы) из-за нарушения расхождения поливалентов в мейозе.
В результате скрещивания тетраплоида с диплоидом получается триплоид. Эти растения крупнее и мощнее, чем растения с кратными числами хромосом (например, сахарная свекла), но полностью стерильные.
Образование растения Raphanobrassica в результате скрещивания редьки и капусты. Следует обратить внимание на форму плода у родителей и гибрида
Недостаток этих гибридов заключается в том, что в результате скрещивания тетра- и диплоидов в потомстве получается только около 55% триплоидов. Тем не менее, экономический эффект от их внедрения в производство перекрыл расходы, связанные со строительством Новосибирского Академгородка к началу 1970-х годов.
5. Аллополиплоидия (амфиполиплоидия)
Полиплоиды, возникающие на основе умножения разных геномов, называются аллополиплоидами геномов. Протекание мейоза у аллополиплоидов имеет ряд особенностей. Например, совмещаются геномы S (рожь) и Т (пшеница). У гибрида будет два генома - Т и S - по 7 хромосом в каждом. В мейозе образуются униваленты, поскольку в наборах хромосом одного вида нет гомологов с хромосомами другого вида, т.е. в мейозе будет 14 унивалентов. В анафазе они будут беспорядочно расходиться к полюсам. Гаметы могут иметь от 0 до 14 хромосом (7Т + 7S). Гаметы, имеющие 14 хромосом, называются нередуцированными. При объединении нередуцированных гамет образуется зигота с удвоенным набором хромосом каждого вида – аллотетраплоид. Он оказывается фертильным.
Первыми получили фертильные аллополиплоиды Г. Д. Карпеченко в 1928 г. на растениях, а на животных – Б.Л. Астауров, который скрещивал Bombix mori с другим видом шелкопряда В. mandarina.
Г.Д. Карпеченко использовал в скрещиваниях два вида из разных родов – Brassica oleacea (капуста) и Raphanus sativus (редька). У обоих видов диплоидное число хромосом 2п=18 (рис. 4.10.). Гибрид имел 18 хромосом, был мощным, сильно цвел, но семян не образовывал. Отдельные гаметы были нередуцированными, т.е. имели по 9R и 9В хромосом. От них получились устойчивые растения, которым автор дал новое видовое название - Рафанобрассика.
Аллополиплоидия широко распространена в природе. Известны многие полиплоидные виды пшеницы. Triticum aestivum (мягкая пшеница) является основным хлебным растением мира (90% мирового производства). Она имеет в составе 2п=42 хромосомы. Другие пшеницы, например Т. durum (твердая пшеница) имеет 2п=28 хромосом. Пшеница однозернянка Т. топососсит имеет 14 хромосом.
В 1913 году A. Schultz разделил виды, входящие в род Triticum на три группы: однозернянки, полбы и спельты. Т. Sakamura (1918) и N. Sax (1922) обнаружили, что однозернянки имеют в соматических клетках 14 хромосом, пшеницы группы полбы - 28, а спельты -42 хромосомы. При исследовании как диких, так и культурных видов пшениц было найдено, что основное число хромосом в роде Triticum, x=7. В результате скрещивания Т. топососсит (группа однозернянок) с Т. turgidum (группа полбы) в мейозе у гибрида было найдено семь бивалентов и семь унивалентов. Таким образом, оказалось, что один геном Т. turgidum имеетгомологию с геномом Т. топососсит (гомологичные хромосомы разных видов называют гомеологичными). Эти геномы назвали символом А. Второй геном Т. turgidum назван геномом В. Пшеницы-однозернянки имеют два генома А, (т.е. АА), а пшеницы-полбы по два генома А и В (т.е. ААВВ).
Из каких компонентов состоят геномы 42-хромосомных мягких пшениц-спельт?
При анализе мейоза у гибридов Т. spelta х Т. топососсит (геном АА) обнаружили образование семи бивалентов, что означает наличие геномов АА в составе генома спельта.
Последующий анализ показал, что Т. топососсит получила геном А от Т. thaoudar - предковой формы однозернянок.
В скрещиваниях пшениц группы полбы (ААВВ) с видами группы спельты в мейозе найдено образование 14 бивалентов и 7 унивалентов. Таким образом было установлено, что Т. spelta имеет два общих генома с пшеницами группы полб (А и В) и еще один, отличный от них геном D. Значит, спельты имеют геномную формулу AABBDD. Очень похожим на пшеницы оказался род Aegilops. Путем анализа многочисленных скрещиваний выяснили, что источником генома D в Т. aestivum является Aegilops squarrosa.
Геном В у видов пшеницы группы полбы был также получен от эгилопса, от Ае. speltoides.
Таким образом, эволюция генома Т. aestivum посредством полиплоидизации может быть представлена на рисунке.
Рисунок - Эволюция генома Triticum aestivum посредством полиплоидизации
Полиплоидия используется селекционерами с целью получения межвидовых гибридов и их закрепления (пшенично-пырейные гибриды).
Искуственное получение полиплоидов
Все факторы, влияющие на митоз и мейоз могут вызвать полиплоидию: изменение температуры, влияние радиации, действие наркотиков, механические воздействия пасынкование, декапитация. Особенно популярным является колхицин - алкалоид, выделяемый из растения безвременника осеннего - Colchicum autumnale. Колхицином обрабатывают точки роста растений, или инъецируют его животным в водном растворе.
Колхицин парализует механизм расхождения хромосом к полюсам, но не препятствует их репродукции.