- •2. Миноры и алгебраические дополнения. Разложение определителя по элементам произвольного ряда.
- •3. Матрицы и их свойства. Ранг матрицы.
- •4. Операции над матрицами, обратная матрица.
- •5. Решение и исследование систем линейных неоднородных алгебраических уравнений с помощью формул Крамера.
- •6. Решение системы линейчатых неоднородных алгебраических уравнений средствами матричного исчисления.
- •7. Метод Гаусса решения систем линейных неоднородных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Доказательство (условия совместности системы)
- •9. Проекция вектора на ось. Направляющие косинусы вектора.
- •10. Линейные операции над векторами и их основные свойства. Линейные операции над векторами Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число
- •Свойства линейных операций над векторами
- •Линейные комбинации векторов
- •11. Теоремы о проекциях векторов. Условие коллинеарности векторов.
- •Условия коллинеарности векторов
- •12. Линейная зависимость векторов. Понятие базиса.
- •Свойства линейно зависимых и линейно независимых векторов
- •Пример.
- •13. Скалярное произведение векторов. Признак ортогональности векторов.
- •14. Расстояние между двумя точками пространства r3 . Деление отрезка в данном отношении. Расстояние между точками в пространстве, формула.
- •Вывод формул для нахождения координат точки, делящей отрезок в данном отношении, на плоскости.
- •15. Векторное произведение векторов.
- •16. Смешанное произведение векторов. Условие компланарности векторов.
- •17. Метод координат и основные задачи аналитической геометрии.
- •18. Прямые в r2. Различные виды уравнений прямой в r2
- •19. Нормированное уравнение прямой.
- •20. Условия параллельности и перпендикулярности прямых. Вычисление угла между прямыми в r2.
- •21. Расстояние от точки до прямой в r2.
- •22. Линии второго порядка. Каноническое уравнение окружности.
- •23. Каноническое уравнение эллипса.
- •24. Каноническое уравнение гиперболы.
- •25. Каноническое уравнение параболы.
- •26. Преобразование уравнений линий второго порядка к каноническому виду. Параллельный перенос системы координат.
- •28. Параметрическая форма задания уравнения линий в трехмерном пространстве.
- •29. Плоскость в трехмерном пространстве. Различные виды уравнений плоскости.
- •30. Нормированное уравнение плоскости
- •31. Расстояние от точки до плоскости.
- •32. Расстояние между двумя параллельными прямыми.
- •33. Прямая в пространстве. Различные формы уравнения прямой.
- •34. Угол между двумя пересекающимися прямыми в пространстве. Расстояние от точки до прямой в пространстве.
- •Первый способ нахождения расстояния от точки до прямой a в пространстве.
- •Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.
- •35. Расстояние между перекрещивающимися прямыми в пространстве.
- •Нахождение общего перпендикуляра скрещивающихся прямых.
- •36. Поверхности второго порядка. Эллипсоиды и гиперболоиды.
- •37. Параболоиды. Уравнения цилиндрических и конических поверхностей.
- •38. Сферическая система координат.
37. Параболоиды. Уравнения цилиндрических и конических поверхностей.
Определение 5.13.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, называется эллиптическим параболоидом.
Свойства эллиптического параболоида.
Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.
Эллиптический параболоид обладает
осевой симметрией относительно оси Oz,
плоскостной симметрией относительно координатных осей Oxz и Oyz.
В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а плоскостями, ортогональными осям Ox иOy – парабола.
Определение 5.14.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, называется гиперболическим параболоидом.
Рисунок 5.7.3 |
Свойства гиперболического параболоида.
Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.
Гиперболический параболоид обладает
осевой симметрией относительно оси Oz,
плоскостной симметрией относительно координатных плоскостей Oxz и Oyz.
В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz, получается гипербола, а плоскостями, ортогональными осям Ox и Oy, – парабола.
Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.
уравнение (56) - прямой круговой цилиндр (рис. 19), уравнение (57) - эллиптический цилиндр (рис. 20), уравнение (58) - гиперболический цилиндр (рис. 21), уравнение (59) - параболический цилиндр (рис. 22).
Пусть направляющая конуса задана уравнениями:
а вершина S конуса имеет координаты x0, y0, z0.
Уравнения образующей запишем как уравнения прямой, проходящей через две точки S(x0, y0, z0) и M(x, y, z), принадлежащие направляющей (60):
где X ,Y, Z - текущие координаты точек образующих.
Исключая из уравнений (60) и (61) x, y, z, получим уравнение относительно переменных X, Y, Z, т.е. уравнение конической поверхности
.
38. Сферическая система координат.
Положение точки М в сферической системе координат задается тройкой чисел r, φ и θ, где r – расстояние от начала координат до точки M (); φ – угол, образованный проекцией радиус-векторана плоскость Оху с положительным направлением оси Ох (); θ – угол между положительным направлением оси Oz и радиус-вектором точки М ().
Рис. 1. Сферические координаты точки M.
Связь между декартовыми и сферическими координатами описывается формулами
Связь между сферическими и цилиндрическими координатами описывается формулами
Поверхность, на которой одна из координат сохраняет постоянное значение, называется координатной поверхностью. Линия, вдоль которой изменяется только одна координата, а остальные координаты остаются неизменны¬ми, называется координатной линией.
Рис. 2. Координатные поверхности сферической системы координат: сфера (r = const); полуплоскость (φ = const); конус (θ = const).
В сферической системе координатные линии, проходящие через любую точку M пространства, пересекаются под прямым углом. Такие системы координат называются ортогональными. Единичный касательный вектор к координатной линии в точке М, направленный в сторону возрастания координаты, называется ортом в точке М. Поскольку сферическая система координат является ортогональной, то в любой точке пространства векторы ипопарно ортогональны. Отметим, что каждая координатная линия перпендикулярна соответствующей координатной поверхности. Некоторые полезные формулы:
Элемент длины дуги:
Якобиан перехода от декартовой системы координат к цилиндрической:
Элемент объема: