- •2. Миноры и алгебраические дополнения. Разложение определителя по элементам произвольного ряда.
- •3. Матрицы и их свойства. Ранг матрицы.
- •4. Операции над матрицами, обратная матрица.
- •5. Решение и исследование систем линейных неоднородных алгебраических уравнений с помощью формул Крамера.
- •6. Решение системы линейчатых неоднородных алгебраических уравнений средствами матричного исчисления.
- •7. Метод Гаусса решения систем линейных неоднородных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Доказательство (условия совместности системы)
- •9. Проекция вектора на ось. Направляющие косинусы вектора.
- •10. Линейные операции над векторами и их основные свойства. Линейные операции над векторами Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число
- •Свойства линейных операций над векторами
- •Линейные комбинации векторов
- •11. Теоремы о проекциях векторов. Условие коллинеарности векторов.
- •Условия коллинеарности векторов
- •12. Линейная зависимость векторов. Понятие базиса.
- •Свойства линейно зависимых и линейно независимых векторов
- •Пример.
- •13. Скалярное произведение векторов. Признак ортогональности векторов.
- •14. Расстояние между двумя точками пространства r3 . Деление отрезка в данном отношении. Расстояние между точками в пространстве, формула.
- •Вывод формул для нахождения координат точки, делящей отрезок в данном отношении, на плоскости.
- •15. Векторное произведение векторов.
- •16. Смешанное произведение векторов. Условие компланарности векторов.
- •17. Метод координат и основные задачи аналитической геометрии.
- •18. Прямые в r2. Различные виды уравнений прямой в r2
- •19. Нормированное уравнение прямой.
- •20. Условия параллельности и перпендикулярности прямых. Вычисление угла между прямыми в r2.
- •21. Расстояние от точки до прямой в r2.
- •22. Линии второго порядка. Каноническое уравнение окружности.
- •23. Каноническое уравнение эллипса.
- •24. Каноническое уравнение гиперболы.
- •25. Каноническое уравнение параболы.
- •26. Преобразование уравнений линий второго порядка к каноническому виду. Параллельный перенос системы координат.
- •28. Параметрическая форма задания уравнения линий в трехмерном пространстве.
- •29. Плоскость в трехмерном пространстве. Различные виды уравнений плоскости.
- •30. Нормированное уравнение плоскости
- •31. Расстояние от точки до плоскости.
- •32. Расстояние между двумя параллельными прямыми.
- •33. Прямая в пространстве. Различные формы уравнения прямой.
- •34. Угол между двумя пересекающимися прямыми в пространстве. Расстояние от точки до прямой в пространстве.
- •Первый способ нахождения расстояния от точки до прямой a в пространстве.
- •Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.
- •35. Расстояние между перекрещивающимися прямыми в пространстве.
- •Нахождение общего перпендикуляра скрещивающихся прямых.
- •36. Поверхности второго порядка. Эллипсоиды и гиперболоиды.
- •37. Параболоиды. Уравнения цилиндрических и конических поверхностей.
- •38. Сферическая система координат.
35. Расстояние между перекрещивающимися прямыми в пространстве.
Пусть L1:x−x1m1=y−y1l1=z−z1k1 и L2:x−x2m2=y−y2l2=z−z2k2 - две скрещивающиеся прямые. Расстояние ρ(L1,L2) между прямыми L1 и L2 можно найти по следующей схеме:
1) Находим уравнение плоскости P, проходящей через прямую L1, параллельно прямой L2:
Плоскость P проходит через точку M1(x1,y1,z1), перпендикулярно вектору n¯¯=[s¯1,s¯2]=(nx,ny,nz), где s¯1=(m1,l1,k1) и s¯2=(m2,l2,k2) - направляющие вектора прямых L1 и L2.Следовательно, уравнение плоскости P:nx(x−x1)+ny(y−y1)+nz(z−z1)=0.
2) Расстояние между прямыми L1 и L2 равно расстоянию от любой точки прямой L2 до плоскости P:
Нахождение общего перпендикуляра скрещивающихся прямых.
Для нахождения общего перпендикуляра прямых L1 и L2, необходимо найти уравнения плоскостей P1 и P2, проходящих, соответственно, через прямые L1 и L2, перпендикулярно плоскости P.
Пусть P1:A1x+B1y+C1z+D1=0;
P2:A2x+B2y+C2z+D2=0.
Тогда уравнение общего перпендикуляра имеет вид
{A1x+B1y+C1z+D1=0;A2x+B2y+C2z+D2=0.
36. Поверхности второго порядка. Эллипсоиды и гиперболоиды.
Поверхность второго порядка — геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида
в котором по крайней мере один из коэффициентов , , , , , отличен от нуля.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называется эллипсоидом.
Рисунок 5.7.1 |
Свойства эллипсоида.
Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что
Эллипсоид обладает
центральной симметрией относительно начала координат,
осевой симметрией относительно координатных осей,
плоскостной симметрией относительно начала координат.
В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.
Рисунок 5.7.2 |
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называется однополостным гиперболоидом.
Рисунок 5.7.4 |
Свойства однополостного гиперболоида.
Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.
Однополостной гиперболоид обладает
центральной симметрией относительно начала координат,
осевой симметрией относительно всех координатных осей,
плоскостной симметрией относительно всех координатных плоскостей.
В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается эллипс, а плоскостями, ортогональными осям Ox и Oy – гипербола.
Определение 5.16.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называетсядвуполостным гиперболоидом.
Рисунок 5.7.5 |
Свойства двуполостного гиперболоида.
Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что и неограничен сверху.
Двуполостный гиперболоид обладает
центральной симметрией относительно начала координат,
осевой симметрией относительно всех координатных осей,
плоскостной симметрией относительно всех координатных плоскостей.
В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при получается эллипс, при– точка, а в сечении плоскостями, перпендикулярными осямOx и Oy, – гипербола.