
- •13. Назначение, устройство и принцип работы систем карбюратора.
- •15,16 Преимущества использования газообразного топлива для автомобилей. Общее устройство и работа газобаллонных установок для сжатых и сжиженных газов.
- •17. Основные требования техники безопасности и пожарной безопасности.
- •18. Назначение, устройство и принцип работы системы питания дизельного двигателя.
- •19. Назначение, устройство и принцип работы приборов системы питания дизелей (топливоподкачивающий насос, фильтры грубой и тонкой очистки, тнвд, форсунки).
- •20. Влияние работы дизельного двигателя на загрязнения окружающей среды.
- •21. Назначение, типы и общее устройство трансмиссии.
- •22. Назначение, типы, общее устройства и принцип работы сцепления.
- •23. Назначение, общее устройство и принцип работы механического и гидравлического приводов сцепления. Свободный ход педали привода сцепления.
- •24. Назначение, типы, общее устройство и принцип работы коробки переключения передач
- •25. Назначение, общее устройство и принцип работы гидромеханической коробки
- •26. Назначение, общее устройство и принцип работы раздаточной коробки.
- •27 Назначение, классификация и общий принцип работы карданной передачи.
- •28. Назначение, устройство и принцип работы шрус ведущих мостов.
- •29. Назначение, устройство и принцип работы ведущих мостов.
- •30. Назначение, типы, устройство и принцип работы главной передачи.
- •31. Назначение, типы, устройство и принцип работы дифференциалов.
- •32. Назначение, устройство и принцип работы разнесенной главной передачи.
- •33. Назначение и общее устройство ходовой части автомобиля.
- •34. Назначение, классификация и устройство рам. Тягово-сцепное устройство.
- •35. Назначение, типы и устройство передних управляемых мостов
- •36. Установка управляемых колес. Влияние установки колес управляемых мостов на безопасность движения автомобиля, износ шин и расход топлива.
- •37. Назначение, классификация и устройство подвесок.
- •38. Назначение, типы и устройство амортизаторов
- •39. Назначение и устройство стабилизатора поперечной установки.
- •40. Назначение, классификация и устройство колес.
- •41. Назначение, классификация и устройство шин.
- •42. Назначение, классификация и устройство кузовов.
- •43. Назначение, классификация и общее устройство рулевых управлений.
- •44. Назначение и устройство рулевой трапеции.
- •45. Назначение, классификация, устройство и принцип работы рулевых механизмов.
- •46. Назначение, классификация, устройство и принцип работы рулевых усилителей.
- •47. Влияние состояния рулевого управления на износ шин и безопасность дорожного движения.
- •48. Назначение, классификация и общее устройство тормозных систем.
- •49. Назначение, классификация и устройство тормозных механизмов.
- •50. Назначение, классификация и устройство приводов тормозных механизмов.
- •51. Особенности конструкции специализированных автомобилей.
- •52. Перспективы развития подвижного состава.
- •53. Неисправности кшм, их причины и признаки.
- •54. Неисправности грм двигателя, их причины и признаки.
- •58. Неисправности системы питания газобаллонных двигателей, их причины и признаки.
- •59. Неисправности системы питания дизельных двигателей, их причины и признаки.
- •60. Неисправности сцепления, их причины и признаки.
- •61. Неисправности коробок передач, их причины и признаки.
- •62. Неисправности карданных передач, их причины и признаки.
- •64. Неисправности передних управляемых мостов, их причины и признаки
- •65. Неисправности подвески, их причины и признаки.
- •66. Неисправности колес, их причины и признаки.
- •67. Неисправности рулевого управления, их причины и признаки.
- •68. Неисправности тормозной системы, их причины и признаки.
- •69. Неисправности рам, их причины и признаки.
- •70. Неисправности кузовов, их причины и признаки.
25. Назначение, общее устройство и принцип работы гидромеханической коробки
переключения передач.
Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач. При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.
Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.
Гидротрансформатор представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками: насосного (ведущего), турбинного (ведомого) и реактора. Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо 2, соединенное с первичным валом 5 коробки передач, и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.
При работающем двигателе насосное колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе. Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и ведущими колесами автомобиля. Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине и, следовательно, на ведущих колесах автомобиля. Имея небольшие размеры и массу, гидротрансформатор обеспечивает: плавное трогание автомобиля с места и отсутствие рывков; гашение крутильных колебаний и снижение ударных нагрузок в трансмиссии автомобиля, в результате чего долговечность двигателя и трансмиссии увеличиваются почти в два раза; повышение проходимости автомобиля в тяжелых дорожных условиях в результате непрерывного подвода мощности и крутящего момента к ведущим колесам и достижения минимальной устойчивой скорости движения (1,5 км/ч); легкость управления автомобилем и повышение безопасности движения благодаря меньшей утомляемости водителя. Однако гидротрансформатор имеет и недостатки: более низкий КПД, чем у ступенчатых коробок передач, вследствие чего несколько снижаются тягово-скоростные свойства и топливная экономичность автомобиля; сложную конструкцию и высокую стоимость. Кроме того, гидротрансформатор невозможно использовать на автомобиле в качестве самостоятельного (автономного) механизма вследствие небольшого диапазона передач.