
- •3) Классификация материалов, их роль в создании материальной базы современной цивилизации.
- •5) История развития материаловедения
- •6) Внутреннее строение материалов.
- •7) Строение и свойства металлов.
- •8) Чёрные и цветные металлы
- •9) Кристаллические и аморфные материалы.
- •10) Кристаллическая решетка, основные типы, элементарная ячейка.
- •11) Макро и микро дефекты
- •12) Анизотропия металлов
- •13.Кристаллизация металлов, кривые охлаждения, этапы процесс.
- •14.Моно- и поликристаллы. Строение механического слитка.
- •15.Методы изучения строения металлов: микро- и макроанализ, рентгеновский анализ, магнитный метод, ультразвуковой метод.
- •16.Физические и химические свойства металлов. Цвет, плотность металла, температура плавления, теплопроводность, тепловое расширение, теплоемкость, электропро-водность. Магнитные свойства.
- •17.Химические свойства.
- •19.Упругая и пластическая деформация.
- •20.Деформации растяжения, изгиба, кручения, среза.
- •21.Прочность и ее показатели.
- •22.Предел текучести. Упругость. Пластичность. Вязкость.
- •23. Твердость, усталость, выносливость. Испыт. На ударн. Вязкость, усталостн. Прочность и ползучесть.
- •25. Нагрев металлов при обработке давлением.
- •26. Основы теории сплавов. Основные сведения о сплавах.
- •27. Фазы в металлич. Сплавах. Понятие фазы. Тв. Р-ры, химич. Соедин. И механич. Смеси.
- •31. Структурные составляющие железоуглеродистых сплавов.
- •32. Железоуглеродистые сплавы. Выплавка стали и чугуна
- •34. Продукция черн. Металлургии: передельн. Чугун, литейн. Чугун, домен. Ферросплавы, стальн.Слитки и прокат.
- •35. Способы литья. Влияние компонентов на свойства чугуна.
- •36. Белый и серый чугун. Высокопрочн. Чугун. Ковкий чугун. Чугуны со спец. Св-вами.
- •37. Стали и их классиф. Способы получ. Стали из чугуна: конверторн.Способ, мартен. Способ, плавка в электрич. Печах.
- •38. Влияние углерода на свойства углеродистых сталей.
- •39. Влияние постоянных примесей на свойства углеродистых сталей.
- •40. Углеродист. И легиров. Стали: стали углеродистые обыкнов. Качества, качеств. Углеродистые стали, углеродист. Стали спец.Назнач.
- •41. Влияние легирующих элементов. Маркировка легированных сталей.
- •42. Цементуемые, улучшаемые и высокопрочн. Стали.
- •43. Углеродист. Инструментальные стали. Легированные инструментальные стали.
- •44. Коррозионно-стойкие стали. Жаростойкие и жаропрочные стали.
- •45. Методы получения высококачественной стали.
- •46. Основы теории термообработки стали. Критич. Температуры. Превращ. Структуры стали при нагреве. Структурные превращения при охлаждении стали.
- •47. Диаграмма изотермических превращений.
- •48. Аустенитно-мартенситное превращение.
- •49. Технология термообработки. Основные виды термообработки, технологические режимы.
- •50. Отжиг стали I и II рода: виды отжига, режимы обработки, изменение структуры и св-в стали, прим. Виды закалки, ее режимы, хар-ки, типы охладителей, изменение структуры и св-в стали.
- •51. Поверхностная закалка. Применение закалки.
- •53. Дефекты при отжиге и нормализации. Дефекты при закалке.
- •54. Термомеханич. Обработка. Новые способы термообработки (лазерная, электроннолучевая).
- •56. Химико-термическая обработка. Азотирование.
- •57. Поверхностное упрочнение стали.
- •59. Цветные металлы и сплавы.
- •60. Деформируемые алюминиевые сплавы –
- •61. Литейные алюминиевые сплавы.
- •62. Получение меди и ее сплавы.
- •63. Латунь. Бронза, сплавы меди с никелем.
- •64. Олово, свинец, цинк и их сплавы.
- •65. Неметаллические материалы
- •68.Основные свойства полимеров
- •69.Номенклатура конструкционных пластмасс
- •70.Полиолефины: полиэтилен и полипропилен.
- •71.Поливинилхлорид.
- •72.Полиэтилентерефталат
- •73.Полистирол.
- •74.Фторопласты
- •75.Полиметилметакрилат.
- •76.Поликарбонаты. Газонаполненные пластмассы.
- •77.Материалы на основе древесины. Структура и свойства древесины
- •78. Модифицирование цельной древесины. Классификация материалов на основе древесины.
- •79.Бумага и картон.
- •80.Минералы и материалы на их основе. Твердые и сверхтвердые материалы.
- •81. Минеральные материалы на основе силикатов.
- •82. Стекло и ситаллы.
- •83. Техническая керамика
- •84. Графит и материалы на его основе.
- •85. Композиционные материалы. Структура и классификация.
- •86. Перспективы использования композитов.
- •87. Биоразлагаемые композиционные материалы на основе полимеров.
- •66. Пластмассы. Классификация пластмасс.
- •67. Строение и структура пластических масс
85. Композиционные материалы. Структура и классификация.
Композиционными называют сложные материалы, в состав которых входят сильно отличающиеся по свойствам нерастворимые или малорастворимые один в другом компоненты, разделённые в материале ярко выраженной границей. Композиционным материалам (КМ) можно также дать следующее определение: это материалы, представляющиесобой твёрдое вещество, состоящее из матриц и различных наполнителей, частицы которых особым образом расположенные внутри матрицы, армируют её. Композиционный материал должен обладать свойствами, которыми не может обладать ни один из компонентов в отдельности. Лишь только при этом условии есть смысл их применения. Все КМ можно разделить на два вида: естественные и искусственные.Классификация композиционных материалов.1,Волокнистые композиционные материалы.Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.3, Стекловолокниты.Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.
4, Карбоволокниты.Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения [pic] и Епочти не изменяются.5, Карбоволокниты с углеродной матриццей.Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.6, Бороволокниты.Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.7, Органоволокниты.Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.