Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Исследование систем управление - Малин.doc
Скачиваний:
1096
Добавлен:
26.03.2016
Размер:
6.52 Mб
Скачать

Методы динамического программирования

Данные методы используются для решения задач математического программирования, позволяющих представлять их в виде нескольких менее сложных подзадач с одной целевой функцией.

Динамическое программирование особенно эффективно для задач, условия которых позволяют составить сетевой график перехода от этапа к этапу, где узлы сети будут соответствовать различным значениям переменных, а дуги — допустимым вариантам решения (см. [6.51]).

Основным принципом, положенным в основу метода динамического программирования, является принцип оптимальности, суть которого заключается в том, что каждое последующее решение строится оптимальным образом независимо от решений, получаемых на всех предыдущих этапах, кроме последнего. Чтобы реализовать этот принцип, необходимо в исходной задаче определить:

¨ этапы решений (подзадачи, на которые она декомпозируется);

¨ управляемые переменные (варианты решений) на каждом этапе;

¨ информацию для решения задачи на каждом этапе;

¨ рекуррентные вычислительные процедуры, связывающие соседние этапы.

Другими словами, в методе динамического программирования искус-твенно создаются условия для независимой оптимизации на отдельном г по результатам только предыдущего, причем с гарантией того, что «ученное решение будет находиться в области допустимых.

Различают прямые и обратные методы оптимизации. Они отличаются ДРУГ от друга различным представлением переменной и видом рекуррентных соотношений (см. [6.51]).

Методы стохастического программирования

Методы используются для задач, в которых все или отдельные параметры описываются с помощью случайных величин. Задачи стохастического программирования возникают тогда, когда каждое действие приводит к неоднозначному исходу и с каждым решением можно связать числовые параметры целевой функции fs(X, ), s = 0, 1, ..., т. При этом параметры fs(X, ) зависят от конкретного решения X и состояния среды . В стохастическом программировании  является элементарным событием некоторого вероятностного пространства.

Общий подход для решения подобного класса задач заключается в оптимизации некоторой вторичной целевой функции, представляющей собой какую-нибудь стохастическую (вероятностную) характеристику исходной (первичной) функции. В зависимости от вида математической модели (аналитической, вероятностной или статистической), в качестве стохастических характеристик могут использоваться математические ожидания, дисперсии, вероятности либо их оценки. Для неслучайных стохастических характеристик (при известных законах распределения) задача сводится к детерминированной. Если не удается установить аналитическую (формульную) зависимость между параметрами и показателями, то приходится прибегать к методу статистического моделирования (методу Монте-Карло) и с его помощью рассчитывать оценки вторичной целевой функции.

Для решения стохастических задач оптимизации можно использовать градиентные методы, методы стохастического моделирования и стохастической аппроксимации, методы программирования с вероятностными ограничениями.