Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
234
Добавлен:
23.03.2016
Размер:
2.49 Mб
Скачать

3. 2. Работа и кинетическая энергия при вращательном движении твердого тела. @

Найдем работу при вращательном движении твердого тела. Пусть ось враще­ния проходит через точку О, находящуюся на расстоянии r от точки приложения силы С, а  ‑ угол между векторами и(рис.3.5). При повороте тела на бесконечно малый уголd точка приложения силы проходит путь dS=rd. Работа силы равна произведению проекции силы вдоль смещения Fsin() на величину этого смещения r d . . НоFrsin( ) = M - момент силы. Таким образом: работа силы при вращении тела вокруг неподвижной оси равна произведе­нию момента действующей силы на угол поворота dA = Md.

Рис.3.5. Вычисление работы при вращательном движении твердого тела.

Чтобы рассчитать кинетическую энергию вращательного движения твердого тела, мысленно его разобьем наn материальных точек с массами m1, m2,...,mn, нахо­дящихся на расстояниях r1, r2,...,rn от оси вращения. Так как тело абсолютно твердое, уг­ловые скорости всех его точек одинаковы

.

Линейные скорости точек будут разные ,и т.д. Кинетическая энергия вращающегося тела Ек.вр равна

;

.

Работа внешних сил при вращении тела идет на увеличение его кинетической энергии. dA=dЕк.вр, следовательно работу можно пред­ставить как разность кинети­че­ских энергий ко­нечного и начального положений

Если тело катится без скольжения, то оно одновременно участвует в двух дви­жениях : по­ступательном и вращательном, и его кинети­чес­кая энергия

.

3. 3. Основное уравнение вращательного движения тела вокруг неподвижной оси. @

Воспользуемся соотношением, приведенным выше dA=dEвр, т.е.

Поделим обе части равенства на dt:

и так как , а, тоили

В векторном вид илипредставляет собой уравнение динамики вращательного движения твердого тела вокруг неподвижной оси, проходящей через центр масс тела. Угловое ускорение, приобретаемое телом при вращении его вокруг неподвиж­ной оси, прямо пропорционально вращающему моменту сил и обратно пропорционально моменту инерции тела. По форме оно сходно с уравнени­ем II закона Ньютона. Из их сопоставления вытекает, что при вращательном движе­нии роль массы играет момент инерции, роль линейного ускорения - угловое уско­рение, роль силы - момент силы.

Ранее получено, что . Возьмем первую производную по времени от этого равенства

.

Это выражение есть вторая (более общая) форма уравнения динамики вращательного движения твердого тела: Скорость изменения момента импульса тела равна результирующему мо­менту всех внешних сил, (оно сходно сзаконом динамики по­ступательного движения: ).

Если на тело не действуют внешние силы или система тел замкнутая, то мо­мент сил и, откудаи получаем закон сохранения момента импульса:Момент импульса замкнутой системы тел остается постоянным во вре­мени. Аналогом его в поступательном дви­жении является закон сохранения импульса замкнутой системы тел. Закон со­хранения момента импульса справедлив и для тел, размеры, форма и момент инер­ции которых могут меняться в ходе движения. Поскольку величина , то при уве­личении момента инерцииJ, угловая скорость  умень­шается и наоборот. К примеру, акробат, совершая переворот в воздухе, чтобы уве­личить угловую скорость своего вращения, группируется, т.е. прижимает к себе руки и ноги. При этом его момент инерции уменьшается.

Соседние файлы в папке МЕХАНИКА