Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ТСиСА_2014.doc
Скачиваний:
1108
Добавлен:
21.03.2016
Размер:
1.75 Mб
Скачать

2. Системы. Понятие, структура системы, свойства систем.

С

Элемент характеризуется конкретными свойствами, определяющими его в данной системе однозначно. Элемент – неделимая часть системы

уществует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенныесвойства (рис. 1).

СИСТЕМА

ЭЛЕМЕНТ

Множество составляющих единство элементов, связей и взаимосвязей между ними и внешней средой, образующее присущую данной системе целостность, качественную определенность и целенаправленность

СВЯЗЬ

Совокупность зависимостей свойств одного элемента от свойств других элементов системы

Связи.

Односторонние зависимости.

Двухсторонние зависимости – взаимосвязи.

Отношения – зависимости состояний элементов системы друг от друга, определяющие необходи­мость и характер взаимодействия между ними.

Процесс взаимного влияния (воздействия) элементов, системы и окружающей среды друг на друга

ВЗАИМОДЕЙСТВИЕ

ВНЕШНЯЯ СРЕДА

ВСЕ ТО, ЧТО НЕ ВХОДИТ В САМУ СИСТЕМУ

Рис. 1. Понятие системы

«Система – это комплекс взаимодействующих компонентов».

«Система – это множество связанных действующих элементов».

«Система – это не просто совокупность единиц... а совокупность отношений между этими единицами».

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего «целое, составленное из частей») представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.

Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства. Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы. Свойстваэто внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующие основные свойства системы:

  • Система есть совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.

  • Наличие существенных связей между элементами. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.

  • Наличие определенной организации, что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.

  • Наличие интегративных свойств, т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.

  • Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.

  • Целостность – это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.

  • Делимость – возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.

  • Коммуникативность. Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.

  • Системе присуще свойство развиваться, адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.

  • Иерархичность. Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.

  • Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.

  • Многофункциональность – способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.

  • Гибкость – это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.

  • Адаптивность – способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.

  • Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.

  • Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.

  • Уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних факторов.

  • Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.

  • Динамичность – это способность функционировать во времени.

  • Наличие обратной связи.

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, ...), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть ZСД (подпространство) – множество допустимых состояний системы.

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.