Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КМ и СФ.docx
Скачиваний:
28
Добавлен:
20.03.2016
Размер:
512.46 Кб
Скачать

Распределение Бозе-Эйнштейна

Обозначим через W, число различных способов, которыми можно разместить N, частиц в ri ячеек. Так как частицы в квантовом случае считаются неразличимыми, то эти способы могут отличаться друг от друга только числом частиц в ячейках, при фиксированном числе частиц в ящике Ni . Разные способы отличаются друг из друга путем переноса частиц из ячейки в ячейку (обменом местами частиц и перегородок).

Зафиксировав каждое такое распределение, оценим всевозможные несущественные (т.е. не дающие новых способов распределения) перестановки частиц друг с другом (их число равно Ni!) и перегородок друг с другом (их число при r, ячеек равно (ri-1)!)

Очевидно, что все число перестановок из всех этих (Nii-1) объектов, включающих и частицы и перегородки.

Если мы имеем ряд ящиков, то число способов W распределения частиц по всем ящикам будет равно

Максимум величины W, т.е. наиболее вероятное распределение, при наложенных условиях:

Задано полное число частиц

Задана полная энергия

Находиться уже известным нам методом неопределенных множителей Лагранжа для функции:

где использована формула Стирлинга для факториалов больших чисел N> 1 и гi>>1 при больших значениях N последнее слагаемое мало по сравнению с каждым из первых двух (уже для N=103 оно составляет около 0,4%).

В соответствии с методом неопределенных множителей Лагранжа, приравняем нулю производную.

или

Где α и β множители Лагранжа

отсюда для наиболее вероятного числа частиц в ячейке имеем распределение Бозе-Эйнщтейна (1924)

Где α и β определяются условием

которые дают уже известные нам значения

Распределение Ферми - Дирака

Если учесть принцип запрета Паули, то в каждой ячейке одного ящика не может быть больше одной частицы, т.е. . Поскольку при этом частицы неразличимы, то различные способы их размещения по ячейкам в ящике различаются только тем, какие ячейки заняты одной частицей, а какие свободны, или иначе говоря, перестановками пустых ячееки занятых, ячеек между собой т.е. перестановкой всех, ячеек:

Общее число способов распределения N частиц по всем ящикам при условии, что в i-й ящик попадает N, частиц, равно произведению

Максимум величины W, дающей наиболее вероятное распределение при условиях

Находится как и прежде методом неопределенных множителей Лагранжа:

приравниванием нулю производную

Откуда для чисел заполнения Ni в ячейках получаем распределение Ферми - Дирака

где α и β определяются из условий:

которые дают уже известные нам значения:

Это выражение отличается от полученного ранее распределения Бозе- Эйнштейна только знаком перед единицей в знаменателе:

Если при любых Еi, выполняются условия разряженности (N/V) газа , то оба эти квантовые распределения переходят (при больших массах и высоких температурах) в Больцмана - Максвелла.

Статистическая термодинамика

Вывод уравнений феноменологической термодинамики на основе полученных статистических соотношений для системы из N частиц, находящихся в i-тых состояниях с вероятностью pi:

Вероятность pi находится на основе минимизации информационной энтропии Шеннона методом Джейнса сиспользованием неопределенных множителей Лагранжадля дополнительных условий

где из (1)

из (2),

Тогда

Рассмотрим в общем виде изменение математического ожидания (среднего значения) энергии <>

(другое общепринятое обозначение работы dW)

Здесь - представляет собой такой способ изменения энергии, при котором изменяются вероятности распределения её уровней при сохранении их значений

- наоборот, сохраняет распределение вероятностей при изменении уровней энергии

Для осуществления 1-го способа изменения энергии (по типу dQ) можно объединить две системы с различными значениями , это из соотношеният.е. для данного набора значенийсредняя энергия зависит только от, причем т.к.то увеличение(при постоянных) обозначает уменьшение, а так как, то при объединении двух систем с разнымисредняя энергияв одной системе будет уменьшаться (где меньше, т.е. больше температураT), а в другой – увеличиваться за счет эффекта нагревания. Такой способ изменения энергии называется передачей теплоты (теплообменом) до тех пор, пока значения не сравняются, т.е. пока не наступит тепловое равновесие.

Для осуществления 2-го способа изменения энергии (по типу dA) можно изменить внешние условия системы (например, её объём V с помощью некоторого поршня, давящего на систему, т.е. изменяющего координаты её частиц – их потенциальную энергию). Этот способ изменения энергии называетсяработой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]