
- •Экзаменационные вопросы/ответы на экзамен по биохимии для стоматологического факультета 2012 года
- •1. Биохимия, ее задачи. Значение биохимии для медицины. Современные биохимические методы исследования.
- •2. Аминокислоты, их классификация. Строение и биологическая роль аминокислот. Хроматография аминокислот.
- •Фолдинг белка. Шапероны.
- •4. Электро-химические свойства белков как основа методов их исследования. Электрофорез белков крови.
- •5. Принципы классификации белков. Характеристика простых белков. Характеристика гистонов и протаминов.
- •6. Хромопротеины. Строение и функции гемоглобина. Типы гемоглобинов. Миоглобин.
- •7. Углевод-белковые комплексы. Строение углеводных компонентов. Гликопротеины и их протеоглиганы.
- •8. Современные представления о структуре и функциях нуклеиновых кислот. Первичная и вторичная структуры днк. Строение мономеров нуклеиновых кислот
- •9. Ферменты, их химическая природа, структурная организация. Активный центр ферментов, его строение. Роль металлов в ферментативном катализе, примеры.
- •10. Коферменты и их функции в ферментативных реакциях. Витаминные коферменты. Примеры реакций с участием витаминных коферментов.
- •11. Номенклатура и классификация ферментов. Характеристика класса оксидоредуктаз. Примеры реакций с участием оксидоредуктаз
- •12. Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты, примеры.
- •13. Ингибирование ферментов. Конкурентное и неконкурентное ингибирование, примеры реакций. Лекарственные вещества как ингибиторы ферментов.
- •3.Субстратное ингибирование
- •15. Обмен веществ и энергии. Этапы обмена веществ. Общий путь катаболизма. Катаболизм пирувата.
- •16. Цитратный цикл, его биологическое значение, последовательность реакций.
- •22. Сопряжение реакций цикла трикарбоновых кислот с дыхательной цепью ферментов. Написать эти реакции.
- •17.Современные представления о биологическом окислении. Над-зависимые дегидрогеназы. Строение окисленной и восстановленной форм над.
- •18. Компоненты дыхательной цепи и их характеристика. Фмн и фад-зависимые дегидрогеназы. Строение окисленной и восстановленной форм фмн.
- •20. Пути синтеза атф. Субстратное фосфорилирование (примеры). Молекулярные механизмы окислительного фосфорилирования (теория Митчелла). Разобщение окисления и фосфорилирования.
- •1.Мембрана митохондрий не проницаема для протонов.
- •2.Образуется протонный потенциал в процессе транспорта электронов и протонов.
- •3.Обратный транспорт протонов в матрикс сопряжен с образованием атф.
- •21. Потребность человека в белках. Незаменимые аминокислоты. Биологическая ценность белков. Роль белков в питании.
- •22.Превращение белков в органах пищеварительной системы.
- •23. Гниение белков и аминокислот в кишечнике. Пути образования продуктов гниения. Примеры.
- •24. Механизм обезвреживания продуктов гниения белков. Роль фафс и удф-гк в этом процессе (конкретные примеры).
- •25. Переаминирование и декарбоксилирование аминокислот. Химизм процессов, характеристика ферментов и коферментов. Образование амидов.
- •26.Декарбоксилирование аминокислот,роль витамина в6.Образование биогенных аминов
- •27. Дезаминирование аминокислот. Виды дезаминирования. Окислительное дезаминирование. Непрямое дезаминирование аминокислот на примере тирозина.
- •28. Синтез мочевины (орнитиновый цикл), последовательность реакций. Биологическая роль.
- •29. Особенности обмена пуриновых нуклеотидов. Их строение и распад. Образование мочевой кислоты. Подагра.
- •30.Генетический код
- •31. Механизмы репликации днк (матричный принцип, полуконсервативный способ). Условия, необходимые для репликации. Этапы репликации
- •32. Биосинтез рнк (транскрипция). Условия транскрипции.
- •33.Этапы транскрипции
- •34. Биосинтез белка. Этапы трансляции и их характеристика. Белковые факторы биосинтеза белка. Энергетическое обеспечение биосинтеза белка.
- •35. Строение оперона. Регуляция биосинтеза белка у прокариотов. Функционирование лактозного и гистидиновых оперонов.
- •36. Особенности и уровни регуляции биосинтеза белка у эукариотов. Амплификация генов, энхансерные и сайленсерные элементы.
- •38. Виды молекулярных мутаций и их метаболические последствия.
- •39. Основные углеводы организма человека, их строение и классификация, биологическая роль.
- •40. Роль углеводов в питании. Переваривание и всасывание углеводов в органах пищеварительной системы. Написать реакции. Непереносимость дисахаридов.
- •41. Биосинтез и распад гликогена в тканях. Биологическая роль этих процессов. Гликогеновые болезни.
- •42. Катаболизм глюкозы в анаэробных условиях. Химизм процесса, биологическая роль.
- •43. Катаболизм глюкозы в тканях в аэробных условиях. Гексозодифосфатный путь превращения глюкозы и его биологическая роль. Эффект Пастера.
- •44. Гексозомонофосфатный путь превращения глюкозы в тканях и его биологическая роль.
- •45. Пути образования глюкозы в организме. Глюконеогенез. Возможные предшественники, последовательность реакций, биологическая роль.
- •46. Характеристика основных липидов организма человека, их строение, классификация, суточная потребность и биологическая роль.
- •47. Биологическая ценность липидов пищи. Переваривание, всасывание и ресинтез липидов в органах пищеварительной системы.
- •48. Характеристика липопротеинов крови, их биологическая роль. Роль липопротеинов в патогенезе атеросклероза Коэффициент атерогенности крови и его клинико- диагностическое значение.
- •49. Окисление высших жирных кислот в тканях. Окисление жирных кислот с нечетным числом углеродных атомов, энергетический эффект.
- •66. Окисление глицерина в тканях. Энергетический эффект этого процесса.
- •67. Биосинтез высших жирных кислот в тканях. Биосинтез жиров в печени и жировой ткани.
- •51. Холестерол. Его химическое строение, биосинтез и биологическая роль. Причины гиперхолестеринемии.
- •78. Витамин в6 и pp. Роль в обмене аминокислот, примеры реакций, строение.
- •82. Биотин, пантотеновая кислота, их роль в обмене веществ.
- •55. Механизм действия липофильных сигнальных молекул. Механизм действия nо. Действие сигнальных молекул через тирозинкиназные рецепторы. Принципы иммунноферментного анализа уровня сигнальных молекул.
- •57. Гормоны передней доли гипофиза, классификация, их химическая природа, участие в регуляции процессов метаболизма. Семейство пептидов проопиомеланокортина.
- •58. Гормоны задней доли гипофиза, место их образования, химическая природа, влияние на функции органов-мишеней.
- •59. Инсулин, схема строения, участие в регуляции метаболических процессов. Специфика в действии на рецепторы органов мишеней, инсулиноподобные факторы роста (ифр)
- •61. Тиреоидные гормоны, место их образования, строение, транспорт и механизм действия на метаболические процессы.
- •62. Тиреокальцитонин, паратиреоидный гормон. Химическая природа, участие в регуляции обмена веществ.
- •91. Глюкагон и соматостатин. Химическая природа. Влияние на обмен веществ.
- •63. Участие адреналина в регуляции обмена веществ. Место выработки. Структура адреналина,механизм его гормонального действия, метаболические эффекты.
- •64. Кортикостероидные гормоны. Структура, механизм действия, их роль в поддержании гомеостаза. Участие глюкокортикоидов и минералокортикоидов в обмене веществ.
- •65. Гормоны половых желез: эстрадиол и тестостерон, их строение, механизм действия и биологическая роль.
- •95. Простаноиды - регуляторы обмена веществ. Биологические эффекты простаноидов и химическая природа.
- •66. Межклеточный матрикс, его компоненты, функции. Характеристика коллагена, его строение. Полиморфизм коллагеновых белков.
- •67. Этапы синтеза и созревания коллагена. Роль ферментов и витаминов в этом процессе. Катаболизм коллагена.
- •68. Особенности строения и функции эластина. Неколлагеновые структурные белки: фибронектин и ламинин.
- •69. Гликозаминогликаны. Строение, функции.
- •70. Протеогликаны межклеточного матрикса, их состав, функции. Образование надмолекулярных комплексов. Метаболизм протеогликанов.
27. Дезаминирование аминокислот. Виды дезаминирования. Окислительное дезаминирование. Непрямое дезаминирование аминокислот на примере тирозина.
ДЕЗАМИНИРОВАНИе - разрушение NН2-группы с выделением аммиака. В организме возможны следующие виды:
1. Восстановительное
2.ГИДРОЛИТИЧЕСКОЕ:
3. Внутримолекулярное:
Эти три вида ДЕЗАМИНИРОВАНИЯ имеют место при гниении.
4. Окислительное. ОКИСЛИТЕЛЬНОМУ ДЕЗАМИНИРОВАНИЮ подвергается только ГЛУ.
ОКИСЛИТЕЛЬНОМУ ДЕЗАМИНИРОВАНИЮ подвергаются и другие аминокислоты, но этот путь является непрямым. Он идёт через ГЛУ и называется процессом НЕПРЯМОГО ОКИСЛИТЕЛЬНОГО ДЕЗАМИНИРОВАНИЯ.
28. Синтез мочевины (орнитиновый цикл), последовательность реакций. Биологическая роль.
Синтез мочевины - основной путь обезвреживания аммиака - ОРНИТИНОВЫЙ ЦИКЛ.
КАРБОМОИЛФОСФАТ
Образование мочевины идёт только в печени. Две первые реакции цикла (образование ЦИТРУЛЛИНА и АРГИНИНОСУКЦИНАТА) идут в МИТОХОНДРИЯХ, остальные в цитоплазме. В организме в сутки образуется 25гр мочевины. Этот показатель характеризует мочевино- образующую функцию печени. Мочевина из печени поступает в почки, где и выводится из организма как конечный продукт азотистого обмена.
29. Особенности обмена пуриновых нуклеотидов. Их строение и распад. Образование мочевой кислоты. Подагра.
Для биосинтеза ПУРИНОВЫХ оснований доносами атомов и атомных групп являются:
Окисление мочевой кислоты - окисление ПУРИНОВЫХ НУКЛЕОЗИДОВ.
Мочевая кислота является конечным продуктом распада ПУРИНОВЫХ НУКЛ.
Уровень мочевой кислоты свидетельствует об интенсивности распада ПУРИНОВЫХ оснований тканей организма и пищи.
НАРУШЕНИЕ ОБМЕНА НУКЛЕОТИДОВ. ГИПЕРУРИКЕМИЯ - повышение уровня мочевой кислоты в крови указывает на повышенный распад нуклеиновых кислот или пуриновых нуклеотидов.(подагру). Заболевание генетически детерминировано и носит семейный характер. При подагре кристаллы мочевой кислоты откладываются в суставных хрящах, синовиальной оболочке, клетчатке. Развивается тяжелый острый механический подагрический артрит и нефропатии.
30.Генетический код
Генетический код и его свойства.
Генетический код – способ записи информации об А-К последовательности нуклеотидов в ДНК или РНК.
Свойства:
Триплетность – 3 нуклеотидных остатка кодируют 1 АК
Квазидуплетность – информацию об АК несут первые 2 нуклеотида в кодоне, а 3 малозначим
Однозначность – каждый триплет кодирует только 1 АК
Вырожденность – свойство ген. Кода, при которомодну и ту же АК могут кодировать несколько триплетов
Универсальность – свойство в том, что генетический код одинаков почти у всех видов организмов
Линейность – информация заключается в зрелой мРНК, в процессе трансляции считывается последовательно, строго в определенном направлении без остановок
Коллинеарность – соответствие последовательности кодонов в зрелой мРНК последовательности АК в синтезируемом белке
Современные представления о структурно-функциональной организации ДНК: генная (структурные, регуляторные элементы ДНК) и негенная (тандемные повторы, псевдогены, мобильные элементы ДНК) области.Основные направления молекулярной биологии (OMICS): геномика, транскриптомика, РН-омика .
95% ДНК человека представляет негенная часть. 5% - собственно гены.
ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ГЕНОМА:
1. СТРУКТУРНЫЕ ГЕНЫ
2. РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ
Структурные гены кодируют синтез МРНК, ТРНК, РРНК. Регуляторные элементы не кодируют РНК и, соответственно, белков; влияют на работу
структурных генов.
Не генная часть представлена:
1. ТАНДЕМНЫЕ ПОВТОРЫ монотонные повторы НУКЛЕОТИДОВ, не имеющие смысла. Это так называемые «пустынные участки» ДНК. В настоящее время смысл этих участков: выполнение структурной функции и площадки для образования генов в эволюции (эволюционный резерв).
2. ПСЕВДОГЕНЫ - неактивные, но стабильные генетические элементы, возникающие в результате мутации в ранее работавших генах (гены, выключенные мутацией). Это побочный продукт и генетический резерв эволюции. Составляют 20 - 30% не генной части ДНК.
3. Мобильные генетические элементы:
-ТРАНСПОЗОНЫ - участки ДНК, способные вырезаться и встраиваться в другие области
ДНК. Это так называемые «странники генов».
-РЕТРОТРАНСПОЗОНЫ - участки ДНК, копирующиеся в пределах генома, как внутри
хромосомы, так и между ними. Могут изменять смысл структурных генов человека, приводят к мутациям. Геном человека изменяется в течении жизни на 10 - 30%.
- поврежденные неактивные, мобильные генетические элементы. Не могут ни вырезаться, ни встраиваться из-за отсутствия в клетке ОБРАТНОЙ ТРАНСФЕРАЗЫ. Если фрагмент поступает в клетку с вирусом, то тогда эти гены начинают транскрибироваться.
Основные направления молекулярной биологии:
ГЕНОМИКА - отрасль молекулярной биологии, изучающая структуру и механизмы работы гена.
Транскриптомика – изуение и идентификация всех мРНК, кодирующих белки, изучение их количества и закономерностей экспрессии структурных генов.
РН-омика – раздел молекулярной биологии, занимающийся изучением и идентификацией всех некодирующих РНК