
- •Компьютерные технологии в науке и образовании
- •Часть 2 Экспертные системы
- •Содержание
- •Лекция 1
- •2.1 Введение в экспертные системы.
- •2.1.1 Назначения и основные свойства экспертных систем
- •Состав и взаимодействие участников построения и эксплуатации экспертных систем
- •Преимущества использования экспертных систем
- •Особенности построения и организации экспертных систем
- •2.1.5 Основные режимы работы экспертных систем
- •2.1.6 Отличие экспертных систем от традиционных программ
- •2.1.7 Технология разработки экспертных систем
- •Лекция 2
- •2.2 Выявление знаний от экспертов.
- •2.2.1 Экспертное оценивание как процесс измерения.
- •Связь эмпирических и числовых систем.
- •Методы измерения степени влияния объектов.
- •2.2.3.1 Метод ранжирования.
- •Метод парных сравнений.
- •Метод непосредственной оценки.
- •Один из подходов к формированию и оценке компетентности группы экспертов.
- •Характеристика и режимы работы группы экспертов.
- •Лекция 3
- •2.3 Обработка экспертных оценок.
- •2.3.1 Задачи обработки.
- •2.3.2 Групповая экспертная оценка объектов при непосредственном оценивании.
- •Обработка парных сравнений.
- •Определение обобщенных ранжировок.
- •Замечания к определению групповых оценок.
- •Лекция 4
- •2.4 Экспертные системы с неопределенными знаниями.
- •2.4.1 Неопределенности в эс и проблемы порождаемые ими.
- •Теория субъективных вероятностей.
- •Байесовское оценивание.
- •Теорема Байеса как основа управления неопределенностью.
- •Лекция 5
- •2.5 Логический вывод на основе субъективной вероятности.
- •2.5.1 Простейший логический вывод
- •Распространение вероятностей в эс
- •Последовательное распространение вероятностей
- •Экспертные системы, использующие субъективные вероятности
- •Лекция 6
- •2.6 Байесовские сети доверия как средство разработки эс.
- •2.6.1 Основные понятия и определения
- •2.6.2 Пример построения простейшей байесовской сети доверия
- •Процесс рассуждения (вывода) в байесовских сетях доверия
- •Байесовские сети доверия как одно из направлений современных экспертных систем
- •Представление знаний с использованием байесовской сети доверия и условная независимость событий
- •Лекция 7
- •2.7 Диаграммы влияния.
- •2.7.1 Назначение и основные компоненты диаграмм влияния
- •2.7.2 Пример построения простейшей диаграммы влияния
- •Диаграммы влияния с несколькими вершинами решения
- •Лекция 8
- •2.8 Сети доверия с условными гауссовскими переменнами.
- •2.8.1 Непрерывные случайные величины
- •Непрерывные гауссовские переменные
- •Числовые характеристики случайных величин
- •Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •Лекция 9
- •2.9 Экспертные системы на основе теории Демстера–Шеффера (тдш).
- •2.9.1 Предпосылки возникновения новой теории.
- •2.9.2 Основы теории Демстера–Шеффера
- •2.9.3 Меры доверия и правдоподобия в тдш
- •2.9.4 Отличие тдш от теории вероятностей
- •2.9.5 Связь между тдш и классической теорией вероятностей
- •2.9.6 Комбинация функций доверия
Замечания к определению групповых оценок.
Все рассмотренные методы получения групповых оценок позволяют получить достоверные результаты в случае хорошо подобранной группы экспертов и согласованности их мнений. Если это не так, то встает задача определения количественной оценки степени согласованности экспертов. Получение количественной меры позволяет более обоснованно интерпретировать причины в расхождении мнений.
Для оценки меры согласованности мнений группы экспертов используют, в частности, дисперсионный и энтропийный коэффициенты конкордации[5]. Кроме этого, при обработке результатов ранжирования могут возникать задачи:
определения зависимости между ранжировками двух экспертов;
связи между достижением двух различных целей при решении одной и той же совокупности проблем;
взаимосвязи между признаками (объектами).
В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок будет являться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена [5] и Кендалла [5].
Лекция 4
2.4 Экспертные системы с неопределенными знаниями.
2.4.1 Неопределенности в эс и проблемы порождаемые ими.
В жизни часто приходится оценивать гипотезы для которых имеется неполная или недостаточная информация. Иногда трудно сделать точные оценки, но, не смотря на неопределенность мы принимаем разумные решения . Чтобы ЭС были полезными, они тоже должны уметь это делать. Классическим примером этой задачи является медицинская диагностика. Всегда существуют некоторые сомнения в четкости проявления симптомов того или иного заболевания. Сомнения в наличии у пациента конкретного заболевания сохраняются даже в том случае, когда все его симптомы отчетливо выражены.
Как же проявляется и учитывается неопределенность в экспертных системах? Рассмотрим простейшую ситуацию. Пусть используется правило
если (А), то (В)
и предположим никакие другие правила и посылки не имеют отношения к рассматриваемой ситуаций. Где же возникает неопределенность? В ЭС она может быть двух типов:
неопределенность в истинности самой посылки(например, если степень уверенности в том, чтоАистинно составляет 90%, то какие значения приметВ)
неопределенность самого правила(например, мы можем сказать, что в большинстве случаев, но всегда, если естьА, то есть также иВ)
Еще более сложная ситуация возникает в случае, если правило имеет вид:
если (А и В), то С
где мы можем с некоторой степенью быть уверены как в истинности каждой из посылок (А,В) , а тем более их совместного проявления, так и в истинности самого вывода. Существуют четыре важные проблемы, которые возникают при проектировании и создании ЭС с неопределенными знаниями:
Как количественно выразить степень определенности при установлении истинности (или ложности) некоторой части данных ?
Как выразить степень поддержки заключения конкретной посылкой?
Как использовать совместно две (или более) посылки, независимо влияющие на заключение ?
Как быть в ситуации, когда нужно обсудить цепочку вывода для подтверждения заключения в условиях неопределенности ?
Прежде всего рассмотрим возможности использования теории вероятности при вводе в условиях неопределенности.