- •В.Г. Ротарь, а.Н. Поляков математическая экономика
- •1. Краткое описание теоретических разделов дисциплины для изучения на лабораторных занятиях
- •1.1. Лабораторная работа №1: Решение задач финансовой математики в условиях определенности
- •Самостоятельное задание №1
- •1.2. Лабораторная работа №2: Сложные проценты
- •Самостоятельное задание №2
- •Самостоятельное задание №3
- •1.3. Лабораторная работа №3:Кредитные расчеты
- •Самостоятельное задание №4
- •12.4. Оценка инвестиционных проектов
- •Чистый приведенный доход
- •Срок окупаемости
- •Внутренняя норма доходности
- •Самостоятельное задание №5
- •Самостоятельное задание №6
- •1.4. Лабораторная работа №4: Формирование портфеля ценных бумаг
- •Самостоятельное задание №7
- •1.5. Лабораторная работа №5: Задача о рюкзаке (14.1)
- •Самостоятельное задание №8
- •14.2 Задача о загрузке судна
- •Самостоятельное задание №9
- •1.6. Лабораторная работа №6: Динамическое программирование: замена оборудования, подверженного старению
- •Самостоятельное задание №10
- •1.6. Лабораторная работа №6: Экономико-математическая модель межотраслевого баланса (модель Леонтьева)
- •1. Задание исходных данных задачи
- •2. Вычисление матрицы коэффициентов полных материальных затрат b.
- •3. Проверка продуктивности матрицы а.
- •4. Вычисление вектора валового выпуска X.
- •5. Вычисление межотраслевых поставок продукции xij
- •Самостоятельное задание №11
- •2. Рейтинг по лабораторным занятиям
- •3. Требования к оформлению отчета по лабораторным занятиям Приложение 1. Пример отчета по лабораторным работам: вариант 3
- •Отчет по лабораторным работам.
- •Лабораторная работа №1
- •Исходные данные:
- •Решение.
- •Исходные данные:
- •Решение.
- •Решение.
- •Исходные данные:
- •Решение
- •Лабораторная работа №3
- •3.1. Кредитные расчеты
- •Исходные данные:
- •Решение.
- •3.2. Оценка инвестиционных проектов
- •Исходные данные:
- •Решение.
- •Решение.
- •Лабораторная работа №4
- •Исходные данные:
- •Решение.
- •Лабораторная работа №5
- •5.1. Задача о рюкзаке.
- •Исходные данные:
- •Решение.
- •5.2. Задача о загрузке судна.
- •Исходные данные:
- •Решение.
- •Лабораторная работа №6
- •Решение.
- •Лабораторная работа №7
- •Исходные данные:
- •Решение.
Самостоятельное задание №4
Составьте график погашеия кредита по данным из задания 3.1, при условии, что основная сумма долга погашается равнными частями в течение 10 лет. Сравните суммы уплаченных процентов.
12.4. Оценка инвестиционных проектов
Инвестиции – это долгосрочные финансовые вложения экономических ресурсов с целью создания и получения выгоды в будущем, которая должна быть выше начальной величины вложений.
Инвестиционный процесс – это последовательность связанных инвестиций, растянутых во времени, отдача от которых также распределена во времени. Этот процесс характеризуется двусторонним потоком платежей, где отрицательные члены потока являются вложениями денежных средств в инвестиционный проект, а положительные члены потока – доходы от инвестированных средств.
Реализация инвестиционных проектов требует отказа от денежных средств сегодня в пользу получения дохода в будущем, поэтому любой инвестиционный проект требует анализа и оценки.
При анализе потоков платежей используются обобщающие показатели:
наращенная стоимость;
приведенная стоимость;
норма доходности.
Эти показатели уже рассматривались ранее, но для инвестиционных процессов они приобретают свою специфику.
Чистый приведенный доход
Поскольку денежные средства распределены во времени, то и здесь фактор времени играет важную роль.
При оценке инвестиционных проектов используется метод расчета чистого приведенного дохода, который предусматривает дисконтирование денежных потоков: все доходы и затраты приводятся к одному моменту времени.
Центральным показателем в рассматриваемом методе является показатель NPV (net present value) – текущая стоимость денежных потоков за вычетом текущей стоимости денежных оттоков. Это обобщенный конечный результат инвестиционной деятельности в абсолютном измерении.
При разовой инвестиции расчет чистого приведенного дохода можно представить следующим выражением:
(18) |
где Rk – годовые денежные поступления в течение n лет, k = 1, 2, …, n;
IC – стартовые инвестиции;
i – ставка дисконтирования.
Важным моментом является выбор ставки дисконтирования, которая должна отражать ожидаемый усредненный уровень ссудного процента на финансовом рынке. Для определения эффективности инвестиционного проекта отдельной фирмой в качестве ставки дисконтирования используется средневзвешенная цена капитала, используемого фирмой для финансирования данного инвестиционного проекта.
Показатель NPV является абсолютным приростом, поскольку оценивает, на сколько приведенный доход перекрывает приведенные затраты:
при NPV > 0 проект следует принять;
при NPV < 0 проект не принимается,
при NPV = 0 проект не имеет ни прибыли, ни убытков.
Необходимо отметить, что показатель NPV отражает прогнозную оценку изменения экономического потенциала фирмы в случае принятия данного проекта.
Пример. Фирма рассматривает целесообразность инвестиционного проекта, стоимость которого составляет 210 тыс. долларов. По прогнозам ежегодные поступления составят 55 тыс. долларов. Проект рассчитан на 5 лет. Необходимая норма прибыли составляет 8%. Следует ли принять этот проект?
Решение:
Чистая стоимость проекта равна:
NPV = 55000 (1,08)-1 + 55000 (1,08)-2 + 55000 (1,08)-3 + 55000 (1,08)-4 +
+ 55000 (1,08)-5 - 210000 = 50926 + 47154 + 43661 + 40427 + 37432 – 210000 = 9599 долларов.
Поскольку величина чистой текущей стоимости 9599 долларов, т.е. NPV > 0, то проект может быть принят.
Формулу (18) можно ввести в Excel, тогда можно будет увидеть сумму накопленного дисконтированного денежного потока в каждый год реализации инвестиционного проекта:
В результате получим:
Для проверки правильности ввода формул можно сравнить величину чистой текущей стоимости на 5-й год реализации проекта со значением, рассчитанным вручную (9599 долларов)