Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по Экологической геофизике.doc
Скачиваний:
98
Добавлен:
12.03.2016
Размер:
8.17 Mб
Скачать

Раздел 4-б – Комплексирование геофизических методов

ТЕМА: Понятие о эколого-геофизичесом комплексе и принципы его выбора. Качественная и количественная неоднозначность при решении прямых и обратных задач. Геоэкологическая интерпретация комплексных геофизических данных

Комплексирование геофизических методов - это сочетание и проведение в определенной последовательности различных геофизических исследований. Необходимость его обусловлена неоднозначностью (многозначностью) истолкования результатов геофизических исследований по определению геологической природы, формы и геометрии изучаемых объектов. Кроме того, необходимость комплексирования определяется тем, что те или иные элементы геологического строения по-разному отражаются в различных геофизических полях и методах. Так, горизонтально-слоистые среды находят хорошее отражение в данных сейсморазведки и методах электромагнитного зондирования, а вертикально-блочное строение более надежно картируется методами электромагнитного профилирования, грави- и магниторазведки.

Основная идея и цель комплексирования геофизических методов — достижение однозначного решения поставленных геологических задач, определение параметров исследуемых объектов и вмещающей среды.

Для обоснованного проектирования геофизических работ и выбора комплекса методов вводится понятие «физико-геологическая модель» (ФГМ) объекта исследований. В упрощенном виде под ФГМ понимают абстрактные тела простой геометрической формы (шар, горизонтальный цилиндр, столб, пласт и др.) с заданными соотношениями физических свойств тел и окружающей среды, для которых в аналитическом виде или численно с помощью компьютеров можно решать прямые задачи, т. е. рассчитывать аномалии, и обратные задачи, т. е. проводить интерпретацию аномалий в рамках выбранной модели.

ФГМ — это сочетание геологической, петрофизической моделей и модели физических полей. Геологическая модельсистема элементов геологического строения, обобщенно описывающая состав, структуру, форму (геометрию) изучаемого объекта и вмещающей среды. Петрофизическая модель — модель, характеризующая физическое поле в верхнем и нижнем полупространстве, в котором отражены интенсивность поля, его морфология, аномальные эффекты и различные типы помех.

При формировании ФГМ используют понятие о прогнозно-поисковой модели, определяемой по сочетанию поисковых геофизических признаков и критериев, которыми называют характерные и устойчивые (обнаруживаемые в большинстве случаев) особенности геофизических полей над искомыми объектами.

Формирование ФГМ какого-либо геологического объекта, процесса или явления предусматривает несколько последовательных операций, к которым относятся:

  • постановка геологической задачи;

  • выбор объекта моделирования (земная кора, рудная или нефтегазовая провинция, отдельные рудные тела, нефтегазовые залежи и т. д.) с построением априорной геологической модели;

  • расчет аномальных петрофизических параметров моделируемого объекта и вмещающей среды;

  • построение петрофизической модели и выделение на ее основе структурно-вещественных комплексов;

  • решение прямых задач геофизики для каждого метода, т. е. построение модели физических полей;

  • оценка, адекватности сформированной ФГМ реальному объекту на эталонах, т. е. на объектах, аналогичных исследуемому, но с известным геологическим строением.

Требования, предъявляемые к ФГМ, изменяются в зависимости от стадийности геологоразведочного процесса (принцип последовательных приближений). Так, например, задача поисков объекта сводится к выявлению перспективных аномалий с заданной вероятностью и минимальным числом точек наблюдений (обычно три). Густоту сети при этом рассчитывают по моделям физических полей, полученным для наименее благоприятных условий залегания моделируемого объекта.

В зависимости от характера геологических задач различают двуальтернативные ФГМ, предназначенные для решения задач типа «руда — вмещающая порода», «нефтегазо-перспективная — пустая структура», и многоальтернативные ФГМ, используемые при решении задач структурно-тектонического районирования территории, геокартирования, многоцелевых поисков разных видов минерального сырья.

С учетом развития геологических процессов во времени различают статические ФГМ, фиксирующие состояние геологического объекта в определенный (исторический) момент времени, и динамические ФГМ, отражающие изменение физических полей на разных стадиях развития геологических процессов в зависимости, например, от глубины проявления рудогенеза, зон окисления, тектогенеза и т. д. Динамические ФГМ широко используются при мониторинге окружающей среды, при режимных наблюдениях над нефтегазохранилищами и крупными месторождениями углеводородов, находящимися в длительной эксплуатации, естественными фильтрационно-диффузионными процессами, при решении инженерных, гидрогеологических и геоэкологических задач.

Условия эффективного применения геофизических методов:

1) Заметная дифференциация физических свойств искомых геологических объектов и вмещающей среды; 2) благоприятные геометрические размеры вызывающих аномалии объектов; 3) относительно низкий уровень помех геологического и негеологического происхождения.

Понятия о дифференциации (контрастности) физических свойств изменяются в зависимости от метода и решаемых геологических задач. Например, для гравиразведки контрастность свойств оценивают значением избыточной плотности (δп), а для электроразведки — соотношением удельных электрических сопротивлений (УЭС) объекта поисков (ρ0) и вмещающей среды (ρср). Для поисков рудных тел гравиразведкой необходима δп около 0,3-0,4 г/см3, а для решения структурных задач достаточно 0,1 г/см3, что связано с размерами разведываемых объектов. Для структурной электроразведки методом ВЭЗ ρп должны различаться как минимум в 1,2—1,5 раза. Для поисков рудных тел методом индуктивного профилирования ρ0 должно быть меньше ρ хотя бы в 10 раз. Кроме контрастности средних значений свойств важное значение имеет дисперсия Р. Ее принято определять по гистограммам, т. е. графикам зависимостей процента замеров (Р,%) с заданным значением (х) какого-нибудь физического свойства. При одинаковой разнице средних значений физических свойств, представленных для двух типов пород, те породы у которых меньшая дисперсия выделяются более надежно (рис.142).

Рис. 142. Вариационные кривые физических свойств пород двух типов (1,2) при разной дисперсии (а, б)

Удобной количественной мерой различия каких-нибудь признаков является надежность разделения γ = 1 – q, где qотношение площади перекрытия вариационных кривых (Soбщ) к сумме полных площадей под вариационными кривыми (S1 + S2). Надежными для различия свойств считают значения γ от 75 до 100 %.

Величины аномалий от объектов определяются геометрическими соотношениями размеров объекта и глубины его залегания. Например, в электроразведке методом ВЭЗ надежное определение слоя возможно, если отношение его мощности (h) к глубине залегания (H) удовлетворяет условию h/H > 2÷10. Слой практически не выделяется, если h/H < 0,1. Предельная глубина залегания изометричных тел, определяемая разными методами геофизики, зависит от отношения радиуса тела (R) к глубине (Н). Например, величины аномалий над сферой пропорциональны: для гравитационных — R3/H2, для магнитных — R3/H3, для естественного электрического поля — R2/H2, поэтому скорость убывания поля с удалением от источника, а, следовательно, и глубина исследования этими методами будут различными. Различают «сильные» аномалии, выделенные визуально, и «слабые» аномалии, соизмеримые с уровнем помех и ниже этого уровня.

Еще одним важным условием применимости геофизических методов является уровень помех. Различают помехи геологического и негеологического происхождения. К первым относят влияние перекрывающих и подстилающих пород, рельефа местности, неоднородности свойств вмещающих пород и т. д. Для электроразведки наибольшее значение имеют рыхлые проводящие отложения в верхней части разреза и слои высокого электрического сопротивления (каменная соль, ангидрит, межпластовые интрузии) на глубине, так называемые экраны. Экраны высокого сопротивления являются препятствием для методов электроразведки постоянным током, но проницаемы для методов переменного тока. Подстилающие породы оказывают заметное влияние на данные грави- и магниторазведки. Рельеф влияет на результаты электроразведки и очень сильно усложняет анализ данных гравиразведки. Толщи многолетнемерзлых пород, распространенные во многих районах нашей страны, создают трудности при проведении электро- и сейсморазведки (устройство заземлений, возбуждение упругих полей).

К помехам негеологического происхождения относят временные вариации геофизических полей. В гравиразведке такие вариации вызываются относительными перемещениями Солнца и Луны и считаются предсказуемыми; в магниторазведке — солнечной активностью и ее воздействием на ионосферу Земли, здесь они непредсказуемы и требуют учета. Искусственные электромагнитные поля искажаются вариациями магнитотеллурических полей, связанных с солнечной активностью, и блуждающих токов техногенного происхождения, а также вариациями полей грозовых разрядов. Для большинства методов электроразведки это поля-помехи, которые надо подавить или учесть. Однако в некоторых методах электроразведки используют физические поля помех с целью получения полезной геологической информации. Приведенные факты подчеркивают относительность понятия помехи.

В геофизике все более заметными становятся помехи, порождаемые деятельностью человека. Сейсмическая вибрация, блуждающие электрические токи, железные предметы в земле и на ее поверхности, подземные горные выработки, техногенные температурные аномалии нередко оказывают заметное влияние на качество геофизических измерений, а в некоторых случаях делают такие работы невозможными. Борьбу с помехами ведут либо методическими приемами, либо аппаратными средствами.

К помехам также относят и погрешности измерений. Их делят на три категории; систематические, случайные и грубые (промахи). Систематические погрешности обусловлены недостатками конструкции прибора или несовершенной методикой измерений и могут быть выявлены путем периодических поверок и устранены введением поправок (например, поправкой за сползание нуль-пункта прибора в грави- и магниторазведке). На случайные погрешности влияет множество причин, учесть и устранить которые не представляется возможным. Но влияние случайных погрешностей можно уменьшить статистическими приемами обработки.

Неоднозначность решения обратных задач геофизики или неопределенность решения имеет две стороны: одна из них касается качественного определения геологической природы выявленных геофизических аномалий, вторая — получения количественных геометрических характеристик объектов исследований: формы, размеров, глубины и других элементов залегания. К примеру, аномалии гравитационных, магнитных, электрических и других полей, обусловленные объектами исследования, очень часто не отличаются по форме, интенсивности и размерам от аномалий, создаваемых геологическими неоднородностями верхней части разреза, рельефом местности и другими факторами. Аномалии от вертикально залегающих рудных тел часто сходны с аномалиями от тектонических нарушений, по которым внедрялись гидротермальные растворы.

Рассмотрим пример однозначного решения задачи распознавания пород разных типов при картировании. Пусть свойства пород шести основных типов (А, Б, В, Г, Д, Е), слагающих район исследований, представлены в виде распределений физических свойств (рис. 143). Если значение магнитной восприимчивости опознаваемого комплекса χ', то этот комплекс можно отнести к одному из трех типов пород А, В, Е. Наличие третьей характеристики — кажущегося сопротивления (ρк΄) — позволяет однозначно определить его принадлежность к классу В. Анализ рис. 143 показывает, что любая из пород шести типов по данным трёх методов (магнито-, грави- и электроразведки) опознается однозначно.

Рис. 143. Определение природы геофизических аномалий

Неоднозначность количественного решения обратной задачи проявляется в теоретической и практической эквивалентности. Теоретическая эквивалентность состоит в том, что различные по размерам и глубинам залегания геологические объекты могут создавать одинаковые по форме, размерам и интенсивности аномалии. Практическая эквивалентность определяется совпадением аномальных эффектов от различных по размерам объектов в пределах погрешностей наблюдений и используемого метода интерпретации.

Качественная и количественная неоднозначности при решении обратной задачи геофизики проявляются обычно одновременно. И в общем случае достижение однозначности как для определения природы геофизических аномалий, так и для количественного описания возмущающих объектов возможно лишь путем комплексирования разных методов.

Природу аномалий (точнее, классификацию их на рудные и безрудные) можно иногда определять и с помощью какого-нибудь одного метода, применяя несколько его модификаций. Это будет внутриметодное комплексирование. Широко известен, например, способ разделения аномалий, выделенных электропрофилированием, на приповерхностные, связанные с неоднородностями в рыхлых отложениях, и глубинные, обусловленные коренными породами. Способ заключается в проведении работ на двух разносах питающих заземлений АВ — меньшем и АВ большем. Если при бо'льшем разносе аномалия ρк проявляется резче, чем при меньшем, значит, она глубинного происхождения, и наоборот. Лучше для этих целей использовать графики отношения величин ρк, полученных для двух разносов. Этим же способом в электропрофилировании можно разрешить неопределенность типа «синклиналь — антиклиналь». Например, понижение ρ может наблюдаться как при поднятии нижнего слоя низкого сопротивления, так и в случае погружения пласта высокого сопротивления. (рис. 144).

Рис. 127. Графики электропрофилирования методом СЭП с двойными разносами над геологическими разрезами различных типов