Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по Экологической геофизике.doc
Скачиваний:
98
Добавлен:
12.03.2016
Размер:
8.17 Mб
Скачать

1 Увлажненные наносы, 2 – граниты, 3 – зона трещиноватости, 4 – глыбовые песчаники, 5 – глины

В электроразведке переменным током разная глубинность достигается наблюдениями на разных частотах: чем выше частота, тем меньше глубинность исследований (скин-эффект). Разночастотные наблюдения могут оказаться полезными и для отделения сплошных сульфидных руд от вкрапленных. При определении природы возмущающего объекта электроразведка переменным током на высоких частотах обладает преимуществом перед методом сопротивлений на постоянном или низкочастотном токе, поскольку в высокочастотных полях породы различаются не только по электропроводности, но и по диэлектрической проницаемости, поэтому разрешающая способность электроразведки возрастает. Породы с одинаковой электропроводностью могут различаться по диэлектрической или по магнитной проницаемости.

В методе естественного поля ложные аномалии фильтрационного происхождения выделяются по признаку их изменчивости во времени. То есть, устойчивость аномалий проверяется по сходству характера графиков потенциала при возможном их различии по абсолютным значениям. Последнее объясняется тем, что интенсивность фильтрации подземных вод зависит от времени года, в частности, от количества выпадающих осадков. Другой отличительной особенностью этих графиков является их обратная связь с рельефом: график потенциала U представляет собой как бы зеркальное отображение рельефа земной поверхности вдоль профиля наблюдений.

Цель комплексной интерпретации геофизических данных - достижение однозначности геологического истолкования геофизических наблюдений. При этом различают комплексный анализ и комплексную интерпретацию полей. Под комплексным анализом понимается отработка комплекса различных признаков для решения задач геокартирования и районирования исследуемой площади (или разреза) на несколько классов, а также перспективных на полезные ископаемые участков. Комплексная интерпретация состоит в построении согласованной по всем полям комплексной физико-геологической модели, т. е. модели с оценками петрофизических свойств, формы и геометрии изучаемых объектов или геосреды. Комплексный анализ, как правило, обеспечивает качественную интерпретацию по оценке природы источников, а комплексная интерпретация — количественную оценку физических и геометрических параметров этих источников. Грани между анализом и интерпретацией часто стираются. Для данных отдельно взятого метода часто используется термин «физико-геологическая интерпретация», включающая установление природы источников аномалий, их количественную оценку и геологическое истолкование.

При комплексном анализе геофизических данных требуется провести разделение площади исследований по комплексу методов, основанных на расчете различных признаков (атрибутов, параметров) полей и отличающихся по геологической природе объектов исследований — классов. В том случае, когда имеется априорная информация о числе классов и о статистических характеристиках признаков для этих классов, т. е. в случае наличия эталонных объектов каждого класса, задача комплексного анализа сводится к распознаванию образов с предварительным обучением на эталонных объектах. Если же число классов неизвестно и нет информации о статистических характеристиках, задача комплексного анализа сводится к задаче классификации (распознавания образов без обучения или с самообучением) на некоторое, заранее неизвестное число однородных (по совокупности признаков) классов. При этом как число классов, так и статистические характеристики признаков оцениваются в процессе обработки исходных данных.

В качестве признаков для геофизических полей используются: статистические (среднее значение, дисперсия, асимметрия, эксцесс); градиентные (горизонтальные градиенты поля, полный градиент, направление полного градиента); корреляционные (интервал корреляции) и спектральные (видимый пространственный период или видимая частота, ширина спектра) измеряемых параметров полей. На эталонных объектах проводится оценка информативности признаков, т. е. способности признака (метода) различать сравниваемые объекты. Такая способность зависит от того, как часто определенные значения признаков поля встречаются у объектов прогнозируемого класса и как широко они распространены за их пределами.

При выборе комплекса геофизических методов в зависимости от имеющейся априорной информации возможны различные варианты. Первый из них связан с привлечением всех методов, которые в принципе способствуют решению поставленной геологической задачи (типовой комплекс методов). Выбор рационального комплекса проводится тогда, когда имеются данные об информативности отдельных методов и их различных сочетаний при решении конкретной задачи, а также экономические показатели методов.

Выбор геофизического комплекса достаточно индивидуален, поскольку зависит от поставленной конкретной задачи с учетом факторов как геологического, так и экономического характера. Однако большой опыт проведения геофизических исследований при решении различных задач в различных геологических условиях позволяет определить те положения (принципы), которые лежат в основе выбора любого геофизического комплекса. К таким принципам относятся:

  • включение в состав комплекса методов, которые обеспечивают получение разнородной информации, т. е. информации о разных элементах и параметрах ФГМ изучаемых объектов, геосреды или процессов;

  • соблюдение определенной последовательности (системности или стадийности) геофизических исследований, характеризующейся возрастающей детальностью изучения объекта, среды, процесса;

  • разделение методов на основные и детализационные. С помощью основного (или основных) метода исследуют всю площадь по равномерной сети наблюдений. Остальные методы играют роль дополнительных, уточняющих и проводятся с большей детальностью на определенных профилях или на ограниченных по размерам участках, перспективность которых определена по данным основных методов;

  • учет геоморфологии и других факторов, отражаемых в схемах районирования территории по условиям применения геофизических методов. Например, в условиях горного рельефа ограничены возможности сейсморазведки и гравиразведки, а при мощном чехле осадочных образований — магниторазведки;

  • многократное чередование геологических, геофизических, геохимических и горнобуровых средств геологической разведки.

После проведения геофизических исследований выявленные аномальные участки детально изучают геологическими и геохимическими методами. В скважинах и выработках наряду с каротажем проводят наблюдения методами подземной геофизики. На основе полученных данных результаты полевых геофизических съёмок интерпретируют заново, выполняют дополнительные геофизические работы по сгущенной сети и с привлечением ранее не применявшихся методов. Перспективные участки затем изучают более детально путем бурения новых скважин и проходки горных выработок.

При выборе комплекса методов для планомерного изучения больших территорий первоочередное внимание следует уделять аэрогеофизическим методам как наиболее производительным и экономичным, стремясь к использованию максимального числа измерительных каналов при съёмке с борта одного самолета или вертолета. Аэрогеофизические исследования должны сопровождаться наземными детализационными работами с целью выявления аномалий на местности и выяснения их природы и перспективности. В наземный комплекс включаются аналоги аэрометодов или близкие к ним по изучаемым параметрам методы.

Формирование геофизического комплекса последовательно реализуется с учетом:

  • построения априорной (предварительной) физико-геологической модели на основе поставленной геологической задачи и имеющейся информации об объекте исследования. Источниками геологической априорной информации являются: тектоника района, геоморфологические условия района (степень закрытости местности, развитие рыхлого покрова и кор выветривания), рельеф местности, состав вмещающей среды, проявления метаморфизма и др. Источниками геофизической информации служат физические свойства пород и руд, измеренные физические поля, результаты физического и математического моделирования;

  • изучения условий применимости геофизических методов для решения поставленной задачи. К таким условиям относятся: а) заметная дифференциация физических свойств пород и руд; б) благоприятные геометрические параметры объекта исследований (форма, размеры, глубина и элементы залегания); в) достаточно низкий уровень помех;

  • выяснения неоднозначности решения задачи отдельными геофизическими методами как по определению геологической природы выявляемых аномалий, так и по оценке количественных параметров объектов: формы, размеров, глубины и элементов залегания;

  • расчета сети наблюдений и необходимой точности измерений. При этом используются параметры ФГМ, масштаб исследований, результаты решения прямых задач, экономические показатели съемки;

  • комплексного анализа и комплексной интерпретации геофизических данных на базе различных методов и компьютерных технологий распознавания образов и классификации изучаемой территории на однородные области;

  • оценки геологической информативности геофизических методов и их сочетаний на базе различных количественных приемов. Такая оценка позволяет осуществить выбор геологически эффективного комплекса, но при этом не учитываются экономические показатели;

  • оценки экономической эффективности методов и их комплекса путем сравнения затрат при одинаковой геологической информативности двух и более методов.

При формировании геофизического комплекса выделяют следующие его виды:

1. Типовой комплекс, создаваемый для достаточно обобщенных и в то же время наиболее типичных геологических и геоморфологических условий проведения работ. Типовой комплекс может содержать избыточное число геофизических методов, поскольку в него включают все методы, в той или иной мере способствующие решению поставленной задачи. Например, при крупномасштабном геологическом картировании масштабов 1 : 50 000 и 1 : 25 000 основными задачами являются: геологическое изучение среды для обоснования поисков, выделение рудоносных структур и формаций, уточнение поисковых критериев с выделением рудоперспективных площадей. При этом типовой комплекс включает: аэрогеофизические съемки (магнитные, электромагнитные, гамма-спектрометрические); наземные электроразведочные работы (вертикальное электрическое зондирование и симметричное электропрофилирование); методы естественного поля, вызванной поляризации и переходных процессов — как детализационные; гравиразведка масштаба 1 : 50 000; сейсморазведка по отдельным профилям на открытых районах и площадная — на закрытых.

В качестве другого примера укажем на прогноз нефтегазоносности в осадочных басейнах, при котором решаются задачи: картирования литолого-стратиграфического комплекса и структурно-фациальных зон; выделения нефтегазоперспективных резервуаров, качественная и количественная оценка перспектив нефтегазоносности; выбор объектов для дальнейших исследований. При этом типовой комплекс включает: гравиметрическую и аэромагнитную съемки масштаба 1 : 200 000 - 1 : 100 000; электроразведку ЗСБ по системе опорных пересечений; сейсморазведку методами отраженных и преломленных волн, глубинное сейсмическое профилирование по системе опорных пересечений, а также параметрическое бурение на опорных профилях в различных структурно-фациальных условиях с проведением геофизических исследований скважин.

  1. Рациональный комплекс, представляющий геологически и экономически обоснованное сочетание геофизических методов и сопровождающих их геологических и геохимических видов исследований с целью эффективного решения поставленной задачи. Особенностью рационального комплекса является его привязка к определенным, а не к типовым геологическим, геоморфологическим и геолого-экономическим условиям конкретного объекта. При этом необходима хотя бы приблизительная оценка информативности и экономических затрат для включаемых в комплекс геофизических методов. Рациональный комплекс создается на основе типового комплекса при наличии достаточного объема априорной информации, позволяющей оценить информативность отдельных методов и их различных сочетаний.

  2. Внутриметодное комплексирование, при котором для решения задачи используются различные модификации одного геофизического метода, например, электропрофилирование и электромагнитное зондирование, комплекс методов отраженных и преломленных волн в сейсморазведке и т. д.

  3. Внешнее комплексирование, представляющее собой сочетание геофизических методов с геохимическими и горно-геологическими исследованиями.

5. Технологический комплекс — сочетание геофизических методов, связанных единой технологией проведения работ по месту и по уровню наблюдений. В качестве технологических комплексов выступают: а) спутниковая геофизика, включающая измерения магнитного поля Земли, альтиметрию над океанами по измерениям обусловленного гравитирующими массами отклонения спутников от сферической орбиты, инфракрасную тепловую съемку в различных диапазонах спектра; б) аэрогеофизика с измерениями магнитного, гравитационного полей, сверхдлинноволновым радиопрофилированием, гамма-спектрометрическими измерениями (U, Th, К и общего канала), а также высотомером; в) геофизические исследования скважин (каротаж) с измерениями электрических полей с потенциал- и градиент-зондами, измерениями магнитной восприимчивости, волнового поля (акустический каротаж) и различных полей естественной и искусственной радиоактивности; г) морская геофизика, также представляющая собой технологический комплекс, поскольку на судне обычно одновременно проводятся измерения нескольких физических полей: магнитного, гравитационного, волнового; д) подземная (или шахтно-рудничная) геофизика — измерения физических полей в горных выработках и скважинах.

Следует отметить возможность изменения геофизических комплексов в пространстве, что отражает факт изменения физических полей на площадях с неодинаковым геологическим строением, хотя при этом может решаться одна и та же задача на одной и той же стадии работ.

  • Проектное задание раздела 4-Б

1. Составить схему классификации геофизических методов по решаемым геологическим задачам.

2. Охарактеризовать основные принципы комплексирования геологических, геофизических, геохимических и геоэкологических методов для решения геологических задач.

3. Дать определения типовых и рациональных комплексов.

4. Составить основные требования к составлению физико-геологических моделей.

5. Обосновать необходимость комплексирования наземных и дистанционных (аэрогеофизических и аэрокосмических) методов для решения геологических (поиски и разведка месторождений нефти, газа, руд, угля строительных материалов и др.) и геоэкологических (аварийные разливы нефти, утечки из магистральных продуктопроводов, подтопление территорий, мониторинг загрязнения промышленных и гражданских объектов и др.) задач.

6. Назвать основные принципы выбора геофизического комплекса и виды комплексирования геолого-геофизических методов.

7. Обосновать эффективность применения геофизических методов в гидрогеологии, инженерной геологии, мерзлотоведении, гляциологии, мелиорации, при экологических и техногенных исследованиях.

  • Тесты рубежного контроля раздела 4-Б.

1.

Вопрос: Зачем необходимо геофизическое комплексирование?

Ответ: Чтобы получить возможно максимальную информацию об объекте исследований. Из-за неединственности и некорректности решения обратных задач геофизики. Для решения геологических задач при поисках, разведке и эксплуатации месторождений полезных ископаемых. Чтобы заменить более дорогостоящее бурение геологоразведочных скважин.

2.

  1. Вопрос: В чем суть физико-геологического моделирования?

Ответ: В решении прямых задач геофизики для проведения интерпретации аномалий в рамках решения обратных геофизических задач. В правильном определении размеров, формы и физических характеристик геологических объектов. В проведении измерений или математических расчетов над макетами геологических образований с целью получения аномальных эффектов.

3.

Вопрос: Чем вызвана необходимость комплексирования наземных и дистанционных (аэрогеофизических и аэрокосмических) методов при решении геологических задач?

Ответ: Удешевлением геологоразведочных работ за счет сокращения объемов бурения. Ландшафтными и климатическими условиями и возможностью сокращения сроков работ. Анализом типовых и выбором рациональных комплексов геофизических исследований.

4.

Вопрос: Каковы причины неоднозначности решения обратных задач геофизики?

Ответ: В неправильно выбранном комплексе геофизических методов. В теоретической (разные геологические объекты создают одинаковые аномалии) и практической (совпадение аномалий от различных объектов) эквивалентности. В отсутствии соответствующих программ обработки геофизической информации.

5.

Вопрос: Как осуществляется выбор геофизических комплексов?

Ответ: На основе принципов оценки наибольшей информативности и экономической целесообразности применения геофизических методов. По критериям подобия с ранее проведенными работами. Путем выяснения степени неоднозначности в решении геологической задачи известных геофизических технологий. На основании инструкций и директивных документов.

  • Критерии оценки по разделу 4-Б.

Коллоквиум.

  • Литература по разделу к разделу 4-Б.

Основная:

  1. Геофизика: учебник /Под ред. В.К. Хмелевского. - М.: КДУ, 2007. – С. 254-273.

  2. Геофизические методы исследования. (Под редакцией В.К.Хмелевского). Учебное пособие. – М.: Недра, 1988. – С. 277-287.

  3. Ники тин А.А., Хмелевской В.К. Комплексирование геофизических методов: учебник для вузов. –Тверь: ООО «Изд-во ГЕРС», 2004. – 294 с.

Дополнительная:

  1. Геоэкологическое обследование предприятий нефтяной промышленности /Под ред. Проф. В.А.Шевнина и доц. И.Н.Модина. – М.:РУССО, 1999.

  2. Огильви А.А. Основы инженерной геофизики: Учеб. Для вузов/Под редакцией В.А.Богословского. – М.: Недра, 1990.

210