
- •1.Задачи ,приводящие к понятию производной:
- •2.Производная функции.Геометрический и механический смыслы производной.Производные основных элементарных функций.Производная сложной функции.
- •3.Дифференциал функции.Аналитический и геометрический смысл дифференциала
- •4.Первообразная функции. Неопределенный интеграл, его свойства. Таблица основных неопределенных интегралов.
- •5. Определенный интеграл. Формула Ньютона-Лейбница. Свойства определенного интеграла. Геометрический смысл определенного интеграла. Определенный интеграл.
- •7.Случайные события. Классическое и статистическое определения вероятности случайного события. Виды случайных событий
- •8.Основные теоремы теории вероятностей.Повторные независимые испытания. Формула Бернулли.Формула Пуассона.
- •9.Дискретные случайные величины.Закон распределения дискретной случайной величины.Основные числовые характеристики дискретнойслучайной величины и ее свойства.
- •10.Непрерывные случайные величины.Функция распределениянепрерывной случайной величины и ее свойства.
- •11.Плотность распределения вероятностей непрерывной случайной величины и ее свойства. Основные числовые характеристики непрерывной случайной величины.
- •12. Нормальный закон распределения. Вероятность попадения нормально распределенной случайнойвеличиныв заданный интервал.Правило трех сигм.
- •13. Статистическая совокупность .Генеральная и выборочная статистические совокупности. Статистический дискретный ряд распределения .Полигоны частот и относительных частот.
- •14.Статистический интервальный ряд распределения.Гистограммы частоти относительных частот.
- •15.Выборочные характеристики распределения.Точечные оценки основныхчисловых характеристик генеральной совокупности
- •16.Интервалтьные оценки числовых характеристик генеральной совокупности.Доверительный интервал,доверительная вероятность. Распределение Стьюдента.
- •17. Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18. Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19. Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20. Внутреннее трение (вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течение жидкости. Формула Гагена-Пуазейля.
- •21. Звук. Виды звуков. Физические характеристики звука. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Шкала уровней интенсивности звука.
- •22. Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23. Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •4. Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25. Эффект Доплера и его использование в медико-биологических исследованиях
- •26. Законы отражения и преломления света. Явление полного внутреннего отражения. Предельный угол преломления. Предельный угол полного отражения.
- •27. Принцип действия рефрактометра. Ход лучей рефрактометра в проходящем и отраженном свете.
- •28. Биологические мембраны, их структура и функции. Модели мембран.
- •29. Перенос частиц через мембраны. Уравнение Фика. Применение уравнения Фика к биологической мембране. Уравнение Нернста-Планка.
- •30. Пассивный транспорт и его основные виды. Понятие об активном транспорте.
- •31. Биоэлектрические потенциалы. Потенциал покоя. Механизм генерации потенциала действия.
- •1Состояние покоя 2 началась деполяризация
- •3Участок полностью деполяризован 4началась реполяризация
- •32. Переменный ток. Полное сопротивление в цепи переменного тока. Импеданс тканей организма. Дисперсия импеданса.
- •33. Устройство простейшего оптического микроскопа. Разрешающая способность и предел разрешения микроскопа. Способы увеличения разрешающей способности микроскопа. Иммерсионные системы.
- •34. Полное и полезное увеличения микроскопа. Ход лучей в микроскопе. Апертурная диафрагма и апертурный угол.
- •35.Поглощение света. Закон Бугера. Закон Бугера-Ламберта-Бера. Конценрационная колориметрия.Нефелометрия.
- •36.Рассеяние света.Явление Тиндаля.Молекулярное рассеяние,Закон Рэлея.Комбинационное рассеяние.
- •37.Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38.Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39.Поляризация света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •40.Тепловое Законы теплового излучения. Формула Планка.
- •1.Закон Кирхгофа: отношение излучательной способности тела к его поглощательной способности не зависит от природы тела и для всех тел является одной и той же функцией длины волны и температуры:
- •2. 2. Закон Стефана – Больцмана: полная (по всему спектру) излучательная способность абсолютно черного тела пропорциональна четвертой степени абсолютной температуры:
- •3. Закон Вина (закон смещения): длина волны на которую приходится максимум энергии излучения абсолютно черного тела обратно пропорциональна абсолютной температуре:
- •41.Излучение Солнца .Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
- •42.Теплоотдача организма.Физические основы термографии.
- •43.Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44.Применение люминофоров и люминесцентного анализа в медицине и фармации.
- •45.Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •1.Устройство,поставляющее энергнию для переработки ее в когерентное излучение
- •2.Активная среда,которая вбирает в себя эту энергию и переизлучает ее в виде когерентного излучения
- •3.Устройство ,осуществляющее обратную связь
- •49.Первичные процессы взаимодействия рентгеновского излучения веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •50.Физические основы применения рентгеновского излучение в медицине. Рентгенодиагностика. Современные рентгеновские компьютерные томографы.
- •51.Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52. Альфа-распад ядер и его особенности. Бета-распад, его виды, особенности и спектр. Гамма излучение ядер.
- •53.Взаимодействие ионизирующего излучения с веществом
- •54.Методы радиационной медицины. Радионуклидная диагностика.
- •55.Методы радиоизотопной терапии.
- •56.Ускорители заряженных частиц и их использование в медицине.
- •57. Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
- •58. Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
- •59. Первичное действие ионизирующих излучений на организм. Защита от ионизирующих излучений.
- •60. Лучевая болезнь, ее виды. Периоды и симптомы острой лучевой болезни.
19. Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
Любое возмущение состояния вещества или поля, распространяющиеся в пространстве с течением времени называются волнами.
Механической волной называют механические возмущения, распространяющиеся в пространстве и несущие энергию. Различают два основных вида механических волн: упругие волны (распространение упругих деформаций) и волны на поверхности жидкости. Упругие волны возникают благодаря связям, существующим между частицами среды: перемещение одной частицы от положения равновесия приводит к перемещению соседних частиц. Этот процесс распространяется в пространстве с конечной скоростью.
Пусть волна распространяется вдоль оси
ОХ без затухания так, что амплитуды
колебаний всех точек
одинаковы и равны. Пусть в источнике
волн изменения колеблющейся системы
происходят по закону:
До точки с некоторой произвольной координатой х возмущение от начала координат дойдет через время τ(знак с формулы), поэтому колебания этой точки запаздывают
Т.к
время и скорость связаны зависимостью
,
,то
получаем :
Это и есть уравнение плоской волны
Основные характеристики волн:
Частота волны – частота колебаний точек среды, в которой распространяется волна.
Фронт волны – геометрическое место точек, до которых к данному моменту дошло колебание (возмущение среды).
Скорость волны (v) – скорость перемещения её фронта.
Длина волны – расстояние, на которое перемещается её фронт за время, равное периоду колебаний частиц среды.
Колеблющийся источник волн обладает энергией. В процессе распространения волны каждая частица среды, до которой доходит волна, также колеблется и имеет энергию.
Выделим некоторый объем V упругой среды, в которой распространяется волна с амплитудой A и циклической частотой ω. В этом объеме имеется средняя энергия
где m - масса выделенного объема среды.
Средняя плотность энергии волны есть энергия волны, сосредоточенная в единице объема среды:
где ρ - плотность среды.
Интенсивностью волны I называется величина, равная энергии, которую в среднем переносит волна за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны:
где ʋ- скорость распространения волны. В векторной форме
называется
вектором
Умова
20. Внутреннее трение (вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течение жидкости. Формула Гагена-Пуазейля.
В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Ньютон установил, что сила Fтр внутреннего трения между двумя слоями жидкости, движущимися с различными скоростями зависит от природы жидкости и пропорциональная площади S соприкасающихся слоёв и градиенту скорости dv/dx между ними:
где
η –
коэффициент пропорциональности,
называемый коэффициентом вязкости или
просто вязкостью жидкости и зависящий
от её природы.
Жидкость, которая подчиняется уравнению Ньютона называют ньютоновской. У большинства жидкостей (вода, низкомолекулярные органические соединения, расплавленные металлы и их соли и др.) коэффициент вязкости зависит только отприроды жидкости и температуры(с повышением температуры коэффициент вязкости понижается). Такие жидкости называются ньютоновскими.а их вязкость нормальной
У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсные системы (суспензии и эмульсии), коэффициент вязкости зависит также от режима течения — давления и градиента скорости.Такие жидкости называют неньютоновскими,а их вязкость аномальной .Например,кровь
В жидкости течение может быть ламинарным или турбулентным.
Ламинарное
(слоистое) течение –
течение, при котором слои жидкости
текут, не перемешиваясь, скользя друг
относительно друга. Распределение
скоростей имеет параболический характер:
Турбулентное течение – течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение – это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости.
Скорость Vкр перехода ламинарного течения в турбулентное определяется числом Рейнольдса Re:
|
Количество жидкости Q, протекающее через поперечное сечение в единицу времени равно Q = vср S, где S=πR2. Следовательно
Формула
Гагена-Пуазейля.
Или _______________________
–Гидравлическое
сопротивление.