
- •1.Задачи ,приводящие к понятию производной:
- •2.Производная функции.Геометрический и механический смыслы производной.Производные основных элементарных функций.Производная сложной функции.
- •3.Дифференциал функции.Аналитический и геометрический смысл дифференциала
- •4.Первообразная функции. Неопределенный интеграл, его свойства. Таблица основных неопределенных интегралов.
- •5. Определенный интеграл. Формула Ньютона-Лейбница. Свойства определенного интеграла. Геометрический смысл определенного интеграла. Определенный интеграл.
- •7.Случайные события. Классическое и статистическое определения вероятности случайного события. Виды случайных событий
- •8.Основные теоремы теории вероятностей.Повторные независимые испытания. Формула Бернулли.Формула Пуассона.
- •9.Дискретные случайные величины.Закон распределения дискретной случайной величины.Основные числовые характеристики дискретнойслучайной величины и ее свойства.
- •10.Непрерывные случайные величины.Функция распределениянепрерывной случайной величины и ее свойства.
- •11.Плотность распределения вероятностей непрерывной случайной величины и ее свойства. Основные числовые характеристики непрерывной случайной величины.
- •12. Нормальный закон распределения. Вероятность попадения нормально распределенной случайнойвеличиныв заданный интервал.Правило трех сигм.
- •13. Статистическая совокупность .Генеральная и выборочная статистические совокупности. Статистический дискретный ряд распределения .Полигоны частот и относительных частот.
- •14.Статистический интервальный ряд распределения.Гистограммы частоти относительных частот.
- •15.Выборочные характеристики распределения.Точечные оценки основныхчисловых характеристик генеральной совокупности
- •16.Интервалтьные оценки числовых характеристик генеральной совокупности.Доверительный интервал,доверительная вероятность. Распределение Стьюдента.
- •17. Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18. Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19. Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20. Внутреннее трение (вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течение жидкости. Формула Гагена-Пуазейля.
- •21. Звук. Виды звуков. Физические характеристики звука. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Шкала уровней интенсивности звука.
- •22. Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23. Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •4. Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25. Эффект Доплера и его использование в медико-биологических исследованиях
- •26. Законы отражения и преломления света. Явление полного внутреннего отражения. Предельный угол преломления. Предельный угол полного отражения.
- •27. Принцип действия рефрактометра. Ход лучей рефрактометра в проходящем и отраженном свете.
- •28. Биологические мембраны, их структура и функции. Модели мембран.
- •29. Перенос частиц через мембраны. Уравнение Фика. Применение уравнения Фика к биологической мембране. Уравнение Нернста-Планка.
- •30. Пассивный транспорт и его основные виды. Понятие об активном транспорте.
- •31. Биоэлектрические потенциалы. Потенциал покоя. Механизм генерации потенциала действия.
- •1Состояние покоя 2 началась деполяризация
- •3Участок полностью деполяризован 4началась реполяризация
- •32. Переменный ток. Полное сопротивление в цепи переменного тока. Импеданс тканей организма. Дисперсия импеданса.
- •33. Устройство простейшего оптического микроскопа. Разрешающая способность и предел разрешения микроскопа. Способы увеличения разрешающей способности микроскопа. Иммерсионные системы.
- •34. Полное и полезное увеличения микроскопа. Ход лучей в микроскопе. Апертурная диафрагма и апертурный угол.
- •35.Поглощение света. Закон Бугера. Закон Бугера-Ламберта-Бера. Конценрационная колориметрия.Нефелометрия.
- •36.Рассеяние света.Явление Тиндаля.Молекулярное рассеяние,Закон Рэлея.Комбинационное рассеяние.
- •37.Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38.Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39.Поляризация света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •40.Тепловое Законы теплового излучения. Формула Планка.
- •1.Закон Кирхгофа: отношение излучательной способности тела к его поглощательной способности не зависит от природы тела и для всех тел является одной и той же функцией длины волны и температуры:
- •2. 2. Закон Стефана – Больцмана: полная (по всему спектру) излучательная способность абсолютно черного тела пропорциональна четвертой степени абсолютной температуры:
- •3. Закон Вина (закон смещения): длина волны на которую приходится максимум энергии излучения абсолютно черного тела обратно пропорциональна абсолютной температуре:
- •41.Излучение Солнца .Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
- •42.Теплоотдача организма.Физические основы термографии.
- •43.Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44.Применение люминофоров и люминесцентного анализа в медицине и фармации.
- •45.Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •1.Устройство,поставляющее энергнию для переработки ее в когерентное излучение
- •2.Активная среда,которая вбирает в себя эту энергию и переизлучает ее в виде когерентного излучения
- •3.Устройство ,осуществляющее обратную связь
- •49.Первичные процессы взаимодействия рентгеновского излучения веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •50.Физические основы применения рентгеновского излучение в медицине. Рентгенодиагностика. Современные рентгеновские компьютерные томографы.
- •51.Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52. Альфа-распад ядер и его особенности. Бета-распад, его виды, особенности и спектр. Гамма излучение ядер.
- •53.Взаимодействие ионизирующего излучения с веществом
- •54.Методы радиационной медицины. Радионуклидная диагностика.
- •55.Методы радиоизотопной терапии.
- •56.Ускорители заряженных частиц и их использование в медицине.
- •57. Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
- •58. Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
- •59. Первичное действие ионизирующих излучений на организм. Защита от ионизирующих излучений.
- •60. Лучевая болезнь, ее виды. Периоды и симптомы острой лучевой болезни.
1.Устройство,поставляющее энергнию для переработки ее в когерентное излучение
2.Активная среда,которая вбирает в себя эту энергию и переизлучает ее в виде когерентного излучения
3.Устройство ,осуществляющее обратную связь
46.У стройство и принцип работы рубинового и гелий – неонового лазеров.
с Рубин состоит из оксида алюминия Аl2 O3, содержащего в качестве примеси немного хрома Сr3+, придающего рубину характерный красный цвет.
Энергетические состояния вблизи Е2 и Е3 являются полосами. Это означает, что состояние атома не связано с какой-то строго определенной энергией, а может иметь энергию в пределах некоторой полосы с центром в Е2 или Е3. Излучение накачки возбуждает две энергетические полосы Е2 и Е3. Т.к. эти полосы являются достаточно широкими, и белый свет от источника накачки содержит большое количество фотонов с энергиями внутри полос, то произойдет «накачка» этих полос. После этого возникает переход с каждой из этих полос в метастабильное состояние Е1. Для обеспечения направленности излучения кристаллу рубина придается форма цилиндра со строго параллельными торцовыми поверхностями
Один торец посеребрен, и представляет собой хорошее зеркало. Другой покрыт серебром лишь частично. Индуцированные фотоны отражаются между параллельными зеркалами и накапливаются. Пучок образуется фотонами, которые вылетают через частично отражающий торец цилиндра.
Накачку
осуществляет мощная разрядная лампа,
навитая в виде спирали вокруг кристалла.
Как только в процессе спонтанного
перехода Е1 →Ео
образуется хотя бы один фотон,
начинается лазерное действие.
Фотоны, движущиеся параллельно оси цилиндра, отражаются от посеребренных торцов и, повторно пересекая кристалл, стимулируют испускание дополнительных фотонов. Часть этих фотонов проходит через торец с полупрозрачным покрытием и формирует лазерный пучок. Большая часть спонтанно испущенных фотонов излучается под углом к оси цилиндра. Они отражаются внутри кристалла и в конце концов вылетают через боковую поверхность. Такие фотоны не дают вклада в лазерный пучок Лазер на рубине работает в импульсном режиме, т.к. непрерывный режим работы приведет к перегреву и кристалл растрескается.
Гелий
- неоновый лазер
состоит
из двух трубок, соединенных патрубками.
Система трубок наполнена смесью гелия
с неоном при низком давлении
(рис.5).
первая
трубка - лазерная, как и рубиновый лазер,
имеет зеркало на одном из торцов и
частично отражающее зеркало на другом.
Вторая трубка - разрядная - имеет
электроды, присоединенные к источнику
питания. Накачка осуществляется по
следующей схеме:
Столкновения
электронов с атомами гелия приводят к
возбуждению состояния В. Атомы газа
находятся в непрерывном движении, и
часто сталкиваются. Если атом Не в
возбужденном состоянии В сталкивается
с атомом Nе в основном состоянии,
то энергия атома Не передается атому
Nе, который переходит в метастабильное
состояние С´. Переход С´ →
В´ является лазерным с испусканием
красных фотонов с длиной волны 632,8 нм.
Гелий - неоновый лазер, в отличие от
рубинового, может работать в непрерывном
режиме.
47.Свойства
лазерного излучения..
Применение лазерного излучения в
медицине.
Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.
1.Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной 2.Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности. 3.Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет ∆λ ≈ 0,01 нм).
4.Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения — до 105 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3·10-12 с. Мощность в импульсе равна Р = E/t = 2,5·1013 Вт (для сравнения: мощность ГЭС составляет Р ~109 Вт). 5.Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 1014—1016 Вт/см2 (средняя интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см2).
6.Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 1015 кд/м2 (для сравнения: яркость Солнца L ~ 109кд/м2).
7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/с, где I —интенсивность излучения, с — скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 1014 Вт/см2 = 1018 Вт/м2 Д = 3,3·109 Па = 33000 атм.
8. Поляризованность. Лазерное излучение полностью поляризовано.
. Использование лазерного излучения в медицине
Процессы, характеризующие взаимодействие лазерного излучения с биообъектами, можно разделить на 3 группы:
• невозмущающее воздействие (не оказывающее заметного действия на биообъект);
• фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции); • фоторазрушение (за счет выделения тепла или ударных волн). Лазерная диагностика
Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики:
Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).
Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.
Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации. При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).
Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты лазерного излучения, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.
Квазиупругое рассеяние. Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.
Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта.
Метод фоторазрушения. Его используют для исследования поверхностного состава объекта.
Использование лазерного излучения в терапии
В терапии используются низкоинтенсивные лазеры (интенсивность 0,1—10 Вт/см2).
Укажем наиболее распространенные методы лазеротерапии.
Терапия с помощью красного света. Излучение He-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца.
Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты. Лазерофизиотерапия — использование лазерного излучения при сочетании с различными методами электрофизиотерапии.
Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом
Использование лазерного излучения в хирургии
В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей.
Приведем некоторые области хирургического применения лазеров.
Лазерная сварка тканей.
Разрушение пигментированных участков
Лазерная эндоскопия
Лазерный пробой
.
48.Рентгеновское излучение.Устройство рентгеновской трубки. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Закон Мозли.
Рентгеновским излучением называют электромагнитные волны с длинной волны от 80 до 10-5.нм Рентгеновское излучение возникает в результате преобразования кинетической энергии ускоренных электронов в энергию электромагнитных волн.
Самым распространенным источником рентгеновского излучения является рентгеновская трубка. Она состоит из наполненного маслом кожуха с колбой. Колба представляет собой вакуумный сосуд из термостойкого стекла, внутри которого находится накапливаемый катод и анод.
При торможении электронов в аноде возникает тормозное рентгеновское излучение. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и появляется электромагнитная волна. Тормозное излучение дает сплошной спектр, который называют белым рентгеновским излучением.
Его
спектральная интенсивность при различных
напряжениях на трубке представлена
кривыми
В сторону длинных волн кривая интенсивности спадает полого, асимптотически приближаясь к нулю с увеличением длины волны. Со стороны коротких волн кривая резко обрывается при некотором значении длины волны ,называемой коротковолновой границей сплошного рентгеновского излучения
Формула определения которой:
eU = hvmax
Поток рентгеновского излучения вычисляется по формуле:
Ф = kIU2Z
–гдеU и Z – напряжение и сила тока в рентгеновской трубке; Z– порядковый номер атома вещества.
Если увеличивать напряжение на трубке выше определенного предела, то на сплошное излучение накладываются узкие спектральные линии, составляющее характеристическое рентгеновское излучение.
Характеристическое ренгеновское излучение имеет линейчатый спектр
Закон Мозли:
Где
М и
-постоянные