Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Дифференциальное исчисление.docx
Скачиваний:
73
Добавлен:
09.03.2016
Размер:
756.99 Кб
Скачать

Первый замечательный предел

Функция  не определена при x=0, так как числитель и знаменатель дроби обращаются в нуль. График функции изображен на рисунке.

Однако, можно найти предел этой функции при х→0.

Приведем доказательство записанной формулы. Рассмотрим окружность радиуса 1 и предположим, что угол α, выраженный в радианах, заключен в пределах 0 < α < π/2. (Так как  четная функция и ее значения не изменяются при изменении знака α, то достаточно рассмотреть случай, когда α > 0.) Из рисунка видно, что

SΔOAC <Sсект.OAC <SΔOBC.

Так как указанные площади соответственно равны

SΔOAC=0,5∙OCOA∙sinα=0,5sinα,Sсект.OAC=0,5∙OC2∙α=0,5α,SΔOBC=0,5∙OCBC=0,5tgα.

Следовательно,

sin α < α < tg α.

Разделим все члены неравенства на sin α > 0:

.

Но . Поэтому на основании теоремы 4 о пределах заключаем, что .

Выведенная формула и называется первым замечательным пределом.

Таким образом, первый замечательный предел служит для раскрытия неопределенности . Заметим, что полученную формулу не следует путать с пределами .

Примеры.

  1. .

  2. .

  3. .

  4. .

ВТОРОЙ ЗАМЕЧАТЕЛЬНЫЙ ПРЕДЕЛ

Второй замечательный предел служит для раскрытия неопределенности 1 и выглядит следующим образом

Обратим внимание на то, что в формуле для второго замечательного предела в показателе степени должно стоять выражение, обратное тому, которое прибавляется к единице в основании (так как в этом случае можно ввести замену переменных и свести искомый предел ко второму замечательному пределу).

Примеры.

  1. .

  2. .

  3. .

  4. .

  5. .

  6. .

СРАВНЕНИЕ БЕСКОНЕЧНО МАЛЫХ ФУНКЦИЙ

Пусть при xa функции f(x) и g(x) являются бесконечно малыми. Тогда будем пользоваться следующими определениями.

  1. Если , то f(x) называется бесконечно малой высшего порядка, чем g(x) (относительно g(x)).

  2. Если , то функции f(x) и g(x) называются бесконечно малыми одного порядка.

  3. Если , то f(x) называется бесконечно малой k-го порядка относительно g(x).

Если , то функции f(x) и g(x) называются эквивалентными бесконечно малыми. В этом случае обе функции стремятся к нулю примерно с одинаковой скоростью. Эквивалентные бесконечно малые будем обозначать f ≈ g.

Примеры.

  1. Пусть f(x)=x2,g(x)=5x. Функции являются бесконечно малыми при x→0. Найдем . Следовательно, f(x) – бесконечно малая высшего порядка относительно g(x).

  2. Пусть f(x)=x2–4,g(x)=x2–5x+6 – бесконечно малые при x→2.

.

Поэтому f(x) и g(x) одного порядка.

  1. f(x)=tg2x,g(x) = 2x – бесконечно малые при х→0.

.

Следовательно, f ≈ g.

  1.  – бесконечно малые при n→∞.

 – этот предел не существует. Поэтому говорят, что функции f и g не сравнимы.

При вычислении пределов полезно помнить о следующем свойстве эквивалентных бесконечно малых функций.

Теорема. Пусть f и g – бесконечно малые функции при ха. Если  и f ≈ f1g ≈ g1, то , т.е. если отношение двух бесконечно малых имеет предел, то этот предел не изменится, если каждую из бесконечно малых заменить эквивалентной бесконечно малой.

Доказательство. Имеем . Тогда

,

что и требовалось доказать.

Докажите самостоятельно эквивалентность следующих бесконечно малых функций при

x→0: sinx ≈ x,tgx ≈ x,arcsinx ≈ x,arctgx ≈ x,1–cosx ≈ x2∕2,loga(1+x≈ x/lna,ln (1+x≈ x,(1+x)m–1 ≈ mx,ax–1 ≈ xlna,ex–1 ≈ x.

Примеры.

  1. .

  2. .

НЕПРЕРЫВНЫЕ ФУНКЦИИ НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ

Представление о непрерывности функции интуитивно связано у нас с тем, что её графиком является плавная, нигде не прерывающаяся линия. При рассмотрении графика такой функции y = f(x) мы видим, что близким значениям аргумента соответствуют близкие значения функции: если независимая переменная  приближается к точке x0, то значение функции y = f(x) неограниченно приближается к значению функции в точкеx0, т.е. к f(x0).

Дадим строгое определение непрерывности функции. Итак, пусть имеем функцию y = f(x).

Функция y = f(x) называется непрерывной в точке x0, если она определена в этой точке и в некоторой окрестности содержащей x0 и

.

(1)

Таким образом, можно сказать, что функция непрерывна в точкеx0, если выполнены 3 условия:

  1. она определена в точке x0 и в некоторой её окрестности;

  2. имеет предел при x → x0;

  3. этот предел равен значению функции в точке x0.

Формулу (1) можно записать в виде , т.к. . Это означает, что для того, чтобы найти предел непрерывной функции при x → x0, достаточно в выражение функции подставить вместо аргумента  x его значение x0.

Пример: Докажем, что функция y = 3x2 непрерывна в произвольной точке x0. Для этого найдем .

Если функция y=f(x) непрерывна в каждой точке некоторого интервала (ab), где a < b, то говорят, что функция непрерывна на этом интервале.

Непрерывные функции обладают следующими свойствами.

Теорема 1. Если функции f(x) и g(x) непрерывны в точке x0, то их сумма φ(x) = f(x) + g(x) также есть непрерывная функция в точке x0.

Доказательство. Так как функции f(x) и g(x) непрерывны в точке x0, то исходя из определения можно написать . Тогда на основании свойств пределов будем иметь

.

Эта теорема справедлива для любого конечного числа слагаемых.

Следующие две теоремы докажите самостоятельно аналогично теореме 1.

Теорема 2. Произведение двух непрерывных функций есть функция непрерывная.

Теорема 3. Частное двух непрерывных функций есть функция непрерывная, если знаменатель в рассматриваемой точке не обращается в нуль.

Если функцию можно представить в виде y = f(u), где u = φ(x), т.е. если функция зависит от переменной через промежуточный аргумент u, то называется сложной функцией переменной x.