Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Дифференциальное исчисление.docx
Скачиваний:
72
Добавлен:
09.03.2016
Размер:
756.99 Кб
Скачать

Примеры.

  1. Рассмотрим функцию y=|x|. Эта функция непрерывна в точке x = 0, т.к. .

Покажем, что она не имеет производной в этой точке.

f(0+Δx) = fx) = |Δx|. Следовательно, Δy = fx) – f(0) = |Δx|

Но тогда при Δx< 0 (т.е. при Δx стремящемся к 0 слева) 

А при Δx > 0

Т.о., отношение при Δx→ 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x| в точке x= 0 не существует. Геометрически это значит, что в точке x= 0 данная "кривая" не имеет определенной касательной (в этой точке их две).

  1. Функция  определена и непрерывна на всей числовой прямой. Выясним, имеет ли эта функция производную при x= 0.

Следовательно, рассматриваемая функция не дифференцируема в точке x= 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy.

Производные элементарных функций.

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

(a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

можно доказать, что

Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

Δy=(xx)n – xn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

Найдем предел

Мы доказали эту формулу для n  N. Далее увидим, что она справедлива и при любом n  R.

  1. y= sin x. Вновь воспользуемся определением производной.

Так как, f(xx)=sin(xx), то

Таким образом,

  1. Аналогично можно показать, что

  1. Рассмотрим функцию y= ln x.

Имеем f(xx)=ln(xx). Поэтому

Итак,

  1. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.

Основные правила дифференцирования

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.

  1. .

  2.  (справедлива для любого конечного числа слагаемых).

  3. .

  4. .

а) .

б) .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3.

Пусть y = u(x) + v(x). Для значения аргумента xx имеем y(xx)=u(xx) + v(xx).

Тогда

Δy=y(xx) – y(x) = u(xx) + v(xx) – u(x) – v(x) = Δu +Δv.

Следовательно,

.

Доказательство формулы 4.

Пусть y=u(x)·v(x). Тогда y(xx)=u(xxv(xx), поэтому

Δy=u(xxv(xx) – u(xv(x).

Заметим, что поскольку каждая из функций u и v дифференцируема в точке x, то они непрерывны в этой точке, а значит u(xx)→u(x), v(xx)→v(x), при Δx→0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.

Пусть, например, y=u·v·w. Тогда,

y ' = u '·(w) + u·(v ·w) ' = u '·v·w + u·(v '·w +v·w ') = u '·v·w + u·v '·w + u·v·w '.

Доказательство формулы 5.

Пусть . Тогда

При доказательстве воспользовались тем, что v(x+Δx)v(x) при Δx→0.

Примеры.

  1. Если , то 

  2. y = x3 – 3x2 + 5x + 2. Найдем y '(–1).

y ' = 3x2 – 6x+ 5. Следовательно, y '(–1) = 14.

  1. y = ln x · cos x, то y ' = (ln x) ' cos x + ln x (cos x) ' =1/x∙cos x – ln x · sin x.

Таким образом,

  1. Аналогично для y= ctgx,