Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Расчет_[лекции].docx
Скачиваний:
47
Добавлен:
07.03.2016
Размер:
2.42 Mб
Скачать

§ Подшипники скольжения шпинделей

Опоры скольжения применяют в шпиндельных узлах тех станков, где подшипники качения не могут обеспечить требуемой точности и долговечности работы. В качестве таких опор используют гидродинамические, гидростатические подшипники и подшипники с газовой смазкой.

Гидродинамические подшипники.

Применяются в шлифовальных станках.

На схеме приведен многоклиновый гидродинамический подшипник. F1, F2, F3 – силы от действия масляных клиньев.

Создаются несколько клиновых зазоров, куда вращающимся валом увлекается масло. Возникает результирующая гидродинамическая сила Fд, которая воспринимает внешнюю нагрузку F в любом направлении.

Клиновые зазоры создаются с помощью башмаков, самоустанавливающихся от внешней нагрузки.

1 – башмаки; 2 – опоры

Самоустановка башмаков достигается их поворотом на сферических опорах.

Рассчитывают длину башмака вдоль оси шпинделя, длину его по дуге и максимально допустимую нагрузку на один башмак.

Кроме этого, расчет гидродинамических подшипников сводится к определению нагрузочной способности Fg подшипника и определению жесткости подшипника.

,

где - нагрузка на 1 вкладыш;

к – число вкладышей.

,

где - жесткость слоя смазки;

- жесткость элементов и сопряжений конструкции.

Недостатки гидродинамических опор: изменение положения оси шпинделя при изменении частоты его вращения.

Гидростатические подшипники.

Обеспечивают высокую точность вращения, обладают демфирующей способностью, высокой долговечностью, высокой нагрузочной способностью при любой частоте вращения шпинделя.

Различают осевые и радиальные гидростатические подшипники.

Осевой гидростатический подшипник.

Насос нагнетает масло под давлением, которое заполняет зазоры как показано на схеме. Образуется масляной слой, исключающий контакт сопряженных поверхностей при неработающем шпинделе.

Радиальный гидростатический подшипник.

По окружности располагаются полости – карманы, куда через дроссели подается масло от насоса. При приложении внешней нагрузки F вал занимает смещенное положение: h1>h2. Это приводит к повышению давления в одних карманах и понижению в противоположных. Разность давлений создает результирующую силу, воспринимающую внешнюю нагрузку F.

Расчет гидростатических подшипников сводится к определению нагрузочной способности Fс, жесткости масляного слоя , расхода масла и потерь на трение.

,

где е – относительное смещение шпинделя в опоре;

Δ – диаметральный зазор Δ=(0,0008÷0,001)∙Д(мм);

Д – диаметр шейки шпинделя,

l – расстояние между опорами;

Рн – давление нагнетаемое насосом.

- жесткость слоя смазки.

[мм3/с] – расход масла.

где μ – динамическая вязкость масла (1÷10)∙103 Па3∙с.

l0=0,1∙Д – размеры перемычек, ограничивающих карманы.

- потери на трение.

РТ – потери на трение в рабочем зазоре.

РQ – потери на прокачивание масла.

Недостатки гидростатических опор: сложная система питания и сбора масла.

Применение: шпинделя особо точных станков и тяжело-нагруженных станков с низкой частотой вращения, где образовывается масляной слой за счет гидродинамического эффекта.