
- •1. Введение
- •1. Допастеровская эра (до 1865 г.).
- •2. Послепастеровская эра (1866 – 1940 гг.).
- •3. Эра антибиотиков (1941-1960 гг.).
- •4. Эра управляемого биосинтеза (1961 – 1975 гг.).
- •5. Эра новой биотехнологии (после 1975 г.).
- •Вопросы для самоконтроля
- •2. Живая клетка – основа биологических систем
- •Эндоплазматический ретикулум (эр)
- •Аппарат Гольджи
- •Цитоплазматический матрикс
- •Клеточные органеллы
- •Хлоропласты
- •Клеточная стенка
- •3. Общая характеристика организмов – объектов биотехнологии
- •Эукариоты. Водоросли
- •Принципы подбора биотехнологических объектов
- •Вопросы для самоконтроля
- •4. Основы генетики микроорганизмов
- •Репликация
- •Синтез белка
- •Регуляция генной активности
- •Изменчивость
- •Генетическая рекомбинация
- •Плазмиды
- •Вопросы для самоконтроля
- •5. Метаболизм и принципы его регуляции
- •Анаболизм и катаболизм
- •Углеводы как источник энергии
- •Анаэробное дыхание
- •Брожение
- •Молочнокислое брожение
- •Спиртовое брожение
- •Маслянокислое брожение
- •Аминокислоты как источник энергии
- •Липиды как источники энергии
- •Двууглеродные соединения как источники энергии
- •Рост микроорганизмов на углеводных средах, спиртах, органических кислотах, углеводородах, с1-соединениях
- •Вопросы для самоконтроля
- •6. Ассимиляция у автотрофных и гетеротрофных организмов
- •Биосинтез углеводов
- •Поглощение света и возбуждение пигментов.
- •Биосинтез нуклеиновых кислот
- •Синтез пуриновых нуклеотидов:
- •Регуляция метаболизма
- •Первичные метаболиты
- •Производство аминокислот.
- •Производство органических кислот.
- •Производство спиртов.
- •Производство витаминов.
- •Вторичные метаболиты
- •Антибиотики.
- •Вопросы для самоконтроля
- •7. Питание микроорганизмов
- •Механизм поступления веществ в клетку
- •1) Пассивная диффузия.
- •4) Перенос (транслокация) групп.
- •1.Фотолитотрофия.
- •2. Фотоорганотрофия.
- •3. Хемолитотрофия.
- •4. Хемоорганотрофия.
- •Потребности микроорганизмов в дополнительных питательных веществах
- •Минеральные элементы.
- •Ростовые вещества.
- •Вопросы для самоконтроля
- •8. Рост, размножение и культивирование микроорганизмов
- •Рост бактериальной клетки
- •Размножение бактерий
- •Размножение бактериальной популяции
- •Непрерывные культуры
- •Синхронные культуры
- •Вопросы для самоконтроля
- •9. Подготовка биологических объектов для биотехнологического процесса
- •Гибридизация микроорганизмов
- •1. Получение генов.
- •2. Введение гена в вектор.
- •3. Перенос генов в клетки организма-реципиента.
- •4. Идентификация клеток-реципиентов, которые приобрели желаемый ген (гены).
- •Генетическая инженерия и конструирование новых организмов
- •Улучшение продуцентов, используемых в производстве, методами генетической инженерии
- •Клеточная инженерия
- •Получение гибридных клеток
- •Возможности клеточной инженерии
- •Культуры тканей и клеток высших растений
- •Культуры клеток животных и человека
- •Трансплантация эмбрионов
- •Гибридомная технология
- •Вопросы для самоконтроля
- •10. Культивирование биологических объектов
- •Принципы действия и конструкции биореакторов
- •Системы перемешивания и аэрации
- •1. Аппараты с механическим перемешиванием.
- •2. Аппараты с пневматическим перемешиванием.
- •3. Аппараты с циркуляционным перемешиванием.
- •Лабораторные, пилотные и промышленные биореакторы: проблемы масштабирования
- •Биотехнологические процессы и аппараты периодического и непрерывного действия
- •Периодические процессы.
- •Специализированные типы биотехнологических процессов и аппаратов Анаэробные процессы.
- •Твердофазные и газофазные процессы.
- •Поверхностные процессы.
- •Вопросы для самоконтроля
- •11. Словарь терминов
- •12.Список использованной литературы
Первичные метаболиты
Ряд метаболитов клетки представляют интерес как целевые продукты ферментации. Их разделяют на первичные и вторичные.
Первичные метаболиты– это низкомолекулярные соединения (молекулярная масса менее 1500 дальтон), необходимые для роста микроорганизмов. Одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, нуклеотиды, витамины и др.
Биосинтез первичных метаболитов осуществляют различные биологические агенты – микроорганизмы, растительные и животные клетки. При этом используются не только природные организмы, но и специально полученные мутанты. Чтобы обеспечить высокие концентрации продукта на стадии ферментации, необходимо создавать продуценты, противостоящие генетически свойственным их природному виду механизмам регуляции. Например, необходимо устранить накопление конечного продукта, репрессирующего или ингибирующего важный фермент для получения целевого вещества.
Производство аминокислот.
В процессе ферментаций, осуществляемых ауксотрофами (микроорганизмы, нуждающиеся для воспроизведения в факторах роста), производят многие аминокислоты и нуклеотиды. Распространенными объектами селекции продуцентов аминокислот являются микроорганизмы, относящиеся к родам Brevibacterium, Corynebacterium, Micrococcus, Arthrobacter.
Из 20 аминокислот, составляющих белки, восемь не могут синтезироваться в организме человека (незаменимые). Эти аминокислоты должны поступать в организм человека с пищей. Среди них особенное значение имеют метионин и лизин. Метионин производится химическим синтезом, а более 80% лизина – биосинтезом. Перспективным является микробиологический синтез аминокислот, так как в результате этого процесса получаются биологически активные изомеры (L-аминокислоты), а при химическом синтезе оба изомера получаются в равных количествах. Поскольку их трудно разделить, половина продукции оказывается биологически бесполезной.
Аминокислоты используют в качестве пищевых добавок, приправ, усилителей вкуса, а также как сырье в химической, парфюмерной и фармацевтической промышленности.
Разработка технологической схемы получения отдельной аминокислоты базируется на знании путей и механизмов регуляции биосинтеза конкретной аминокислоты. Необходимого дисбаланса метаболизма, обеспечивающего сверхсинтез целевого продукта, добиваются путем строго контролируемых изменений состава и условий среды. Для культивирования штаммов микроорганизмов при производстве аминокислот как источники углерода наиболее доступны углеводы – глюкоза, сахароза, фруктоза, мальтоза. Для снижения стоимости питательной среды используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты, метанола, этанола, н-парафинов.
Производство органических кислот.
В настоящее время биотехнологическими способами в промышленных масштабах синтезируют ряд органических кислот. Из них лимонную, глюконовую, кетоглюконовую и итаконовую кислоты получают лишь микробиологическим способом; молочную, салициловую и уксусную – как химическим, так и микробиологическим способами; яблочную – химическим и энзиматическим путем.
Уксусная кислота имеет наиболее важное значение среди всех органических кислот. Ее используют при выработке многих химических веществ, включая каучук, пластмассы, волокна, инсектициды, фармацевтические препараты. Микробиологический способ получения уксусной кислоты состоит в окислении этанола в уксусную кислоту при участии бактерий штаммов GluconobacterиAcetobacter:
Лимонную кислоту широко используют в пищевой, фармацевтической и косметической промышленности, применяют для очистки металлов. Самый крупный производитель лимонной кислоты – США. Производство лимонной кислоты является старейшим промышленным микробиологическим процессом (1893 г.). Для ее производства используют культуру гриба Aspergillus niger, A. wentii. Питательные среды для культивирования продуцентов лимонной кислоты в качестве источника углерода содержат дешевое углеводное сырье: мелассу, крахмал, глюкозный сироп.
Молочная кислота – первая из органических кислот, которую начали производить путем брожения. Ее используют в качестве окислителя в пищевой промышленности, как протраву в текстильной промышленности, а также при производстве пластмасс. Микробиологическим путем молочную кислоту получают при сбраживании глюкозы Lactobacillus delbrueckii.