- •Міністерство освіти і науки україни
- •Практичне заняття 2. Теореми додавання і множення ймовірностей
- •Практичне заняття 3. Формула повної ймовірності. Формула бейєса
- •Практичне заняття 4. Послідовність незалежних випробувань
- •Практичне заняття 5. Послідовність незалежних випробувань
- •Практичне заняття 6. Дискретна випадкова величина
- •Практичне заняття 7. Неперервна випадкова величина
- •Практичне заняття 8. Неперервна випадкова величина
- •Практичне заняття 9. Неперервна випадкова величина
- •Практичне заняття 10. Закони розподілу дискретної випадкової величини
- •Практичне заняття 11. Закони розподілу неперервної випадкової величини
- •Практичне заняття. 12. Нормально розподілена випадкова величина
- •Розв’язання.
- •Практичне заняття 13. Двовимірна дискретна випадкова величина
- •Практичне заняття 14. Двовимірна неперервна випадкова величина
- •Практичне заняття 15. Статистичні оцінки параметрів розподілу
- •Практичне заняття 16. Статистичні оцінки параметрів розподілу
- •Практичне заняття 17. Довірчі інтервали
- •Практичне заняття 18. Статистичні гіпотези
- •Практичне заняття 19. Статистичні гіпотези
- •Практичне заняття 20. Критерій згоди пірсона
- •Практичне заняття 21. Елементи теорії кореляції
- •Практичне заняття 22. Випадкові процеси
- •Практичне заняття 23. Моделювання випадкових величин методом монте-карло
- •Практичне заняття 24. Системи масового обслуговування. Ланцюги маркова
- •Таблиця значень функції
- •Таблиця значень функції
- •Таблиця значень функції
- •Додаток 4 Таблиця значень , що задовольняють рівність
- •Додаток 5 Таблиця значень
- •Додаток 6 Критичні точки розподілу Ст’юдента (t-розподілу)
- •Додаток 7 Критичні точки розподілу Фішера (f-розподілу)
- •Критичні значення критерію Колмогорова для деяких .
- •Рівномірно розподілені випадкові числа
Практичне заняття 3. Формула повної ймовірності. Формула бейєса
1. Формула повної ймовірності.
2. Формула Бейєса
Задача. На двох верстатах-автоматах виробляють однакові деталі, які надходять на транспортер. Продуктивність першого верстата утричі більша, ніж другого, причому перший верстат виробляє нестандартну деталь з імовірністю 0,15, а другий – з імовірністю 0,2. Знайти ймовірність того, що навмання взята з транспортера деталь буде стандартною.
Розв’язання.Розглянемо події:А–«вибрана деталь стандартна»;
– «деталь виготовлено напершому
верстаті»;
– «деталь виготовлено на другому
верстаті». Події
і
несумісні й утворюють повну групу, що
ж до подіїА, то вона може відбутись
одночасно з кожною із цих подій. Умовні
ймовірності настання події А
відомі. Згідно з умовою, що продуктивність
першого верстата утричі більша, ніж
другого, знаходимо![]()
За формулою повної ймовірності маємо:![]()
Задача. Партію виготовлених деталей перевіряли два контролери. Перший перевірив 45 %, а другий – 55 % деталей. Імовірність припуститися помилки під час перевірки для першого контролера становить 0,15, для другого – 0,1. Після додаткової перевірки в партії прийнятих деталей виявлено браковану. Оцінити ймовірність помилки для кожного контролера.
Розв’язання.Розглянемо події:А– «виявлено браковану деталь».
– «деталь перевіряв перший
контролер»;
– «деталь перевіряв другий контролер»;
Події
і
несумісні й утворюють повну групу. ПодіяАвідбулась одночасно з однією із
цих подій, імовірності яких потрібно
переоцінити. Застосуємо формулу Байєса.

![]()
Отже, більш імовірно, що помилки припустився перший контролер.
Задача. Маємо дві партії однакових виробів. Перша складається з 15 стандартних і 4 нестандартних, друга – із 18 стандартних і 5 нестандартних виробів. Із навмання вибраної партії взято один виріб, який виявився стандартним. Знайти ймовірність того, що другий навмання взятий виріб також буде стандартним.
Розв’язання.Розглянемо події:
– «перший виріб взято з першої партії»;
– «перший виріб узято з другої партії»;А– «перший узятий виріб стандартний»;С– «другий узятий виріб стандартний».
За формулою повної ймовірності знаходимо
ймовірність подіїА:
![]()
За формулою Байєса
обчислюємо умовні ймовірності
і![]()
![]()
![]()
Імовірність події Сзнаходимо за формулою:
![]()
Умовні ймовірності
такі:
![]()
Отже,
![]()
Задача.Деталь може надійти для обробки на перший верстат із імовірністю 0,2, на другий верстат – із імовірністю 0,3 і на третій – із імовірністю 0,5. При обробці деталі на першому верстаті ймовірність допустити брак дорівнює 0,01, на другому і третьому верстатах ця ймовірність відповідно дорівнює 0,05 і 0,08. Оброблені деталі вміщують в одну шухляду. Навмання взята звідти деталь виявилась бракованою. Яка ймовірність того, що її обробляв перший верстат?
Відповідь.
.
Задача.Клапани, виготовлені цехом заводу, перевіряють три контролери. Імовірність того, що клапан потрапить на перевірку до першого контролера дорівнює 0,3, до другого – 0,5 і до третього – 0,2. Імовірність того, що бракована деталь буде виявлена для першого, другого і третього контролерів відповідно дорівнює 0,95, 0,9, 0,85. Під час повторної перевірки відбракованої деталі вона виявилась бракованою. Яка ймовірність того, що цю деталь перевіряв третій контролер?
Відповідь.
.
