Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otchet_2-oy_praktiki.doc
Скачиваний:
54
Добавлен:
04.03.2016
Размер:
676.35 Кб
Скачать

4.2. Термомеханический способ

Термомеханическая обработка металлов (ТМО), совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате которой формирование окончательной структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластической деформацией. Т. о., особенностью этого способа изменения свойств металлических сплавов является сочетание операций обработки металлов давлением и термической обработки.

Возможность применения ТМО определяется тем, что на процессы структурных превращений существ влияние оказывают присутствующие в реальных сплавах несовершенства строения (дислокации, дефекты упаковки, вакансии). С другой стороны, в результате некоторых структурных изменений образуются новые несовершенства, а также происходит перераспределение имеющихся несовершенств. Отсюда механизм и кинетика структурных изменений при ТМО зависят от характера и плотности несовершенств строения и, в свою очередь, влияют на их количество и распределение.

 Развитие ТМО и создание её основных положений оказались возможными лишь на базе теории дислокаций, в частности тех её разделов, в которых устанавливается связь между несовершенствами строения и процессами структурообразования при превращениях. Исторически первой опробованной схемой термомеханического упрочнения машиностроительной стали (1954, США) была низкотемпературная термомеханическая обработка (НТМО). Смысл переохлаждения аустенита в схеме НТМО заключается в том, чтобы вести деформацию ниже температуры его рекристаллизации (А1).

Температура проведения деформации при ВТМО лежит обычно выше верхней критической точки полиморфного превращения (А3).Отсюда и экспериментально наблюдаемая развитая мозаичность строения стали после ВТМО, повышенная тонкая субмикроскопическая неоднородность строения и состава мартенсита, которая обеспечивает после ВТМО уникальное сочетание свойств, когда наряду с повышением прочности одновременно увеличиваются пластичность, вязкость и сопротивление хрупкому разрушению.

Понимание физической сущности упрочнения в результате ТМО оказалось возможным лишь после того, как стали проясняться основные закономерности структурных изменений при горячей деформации, а именно в нагреве стали до температуры аустенитного состояния (выше А3). При этой температуре осуществляют деформацию стали, что ведет к наклепу аустенита. Сталь с таким состоянием аустенита подвергают закалке.

При изготовлении детали «крышка» 250/1200-03.460.301 для упрочнения поверхностного слоя на операции 125 проводится закалка непрерывная токами высокой частоты.

Закалка ТВЧ обеспечивает высокое качество изделий и дает наиболее стабильные результаты по сравнению с другими методами поверхностного упрочнения (большое сопротивление изнашиванию и усталостному разрушению, малые деформации, почти полное отсутствие окисления и обезуглероживания). Благодаря нагреву только поверхностных слоев уменьшаются затраты энергии на нагрев.

Нагрев ТВЧ позволяет проводить закалку отдельных участков. Недостатком является высокая стоимость индукционных установок и индукторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]