
- •А.А. Силич, т.А. Миронова, ф.В. Авдощенко
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •Рис 1.11. Аксонометрическое изображение модели
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •Рис 2.4 Прямые частного положения
- •Рис 2.5 Проекция прямой частного положения
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •Рис 2.12 Проекция прямого угла
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •А) в диметрии; б) на эпюре
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Рис 3.12 Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •Рис 4.2. Преобразование чертежа точки на эпюре
- •Рис 4.3. Преобразование чертежа прямой
- •Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
- •Рис 4.5. Преобразование чертежа
- •Рис 4.7. Преобразование плоскости общего положения
- •Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
- •Рис 4.9. Преобразование плоскости общего положения в плоскость уровня
- •Рис 4.10. Вращение точки вокруг оси в диметрии
- •Рис 4.11. Вращение точки вокруг оси на юпюре
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •A) б)
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Содержание
- •Глава 3. Относительное положение прямой и
Какую работу нужно написать?
Положения и определение натуральной величины сечения
Решение:
Систему плоскостей проекций VH преобразуем так, чтобы плоскость общего положения преобразовалась в проецирующую. Для этого проводим новую ось Х1 перпендикулярно горизонтальной проекции горизонтали секущей плоскости. В новой системе HV1 секущая плоскость становится фронтально-проецирующей (след РV1).
Строим проекции призмы в системе HV1.
В системе HV1 строим плоскость РV1, содержащую линию ската s и горизонталь h.
Строим проекции сечения в системе VH. Горизонтальная проекция сечения совпадает с горизонтальной проекцией основания призмы (АНВНСН). Чтобы получить фронтальную проекцию сечения, необходимо использовать условия способа замены плоскостей проекций, т. е. BV2V= BV12V1; AV1V = AV11V1; CV3V = CV13V1.
Натуральную величину сечения определяем способом плоскопараллельного перемещения.
5.3. Пересечение многогранников с прямой линией
Решение этой задачи основано на известном определении точки пересечения прямой с плоскостью. Задача решается в следующей последовательности:
Ччерез прямую проводят вспомогательную плоскость (чаще всего проецирующую).
Строят фигуру сечения многогранника такой вспомогательной плоскостью.
Точки пересечения сторон многоугольника сечения с прямой, будут точками пересечения прямой линии с гранями многогранника.
Если прямая не пересекает многоугольник сечения, то она не пересекает и многогранник. При определении видимости прямой необходимо учитывать видимость точек пересечения: точки видимы, если лежат на видимых гранях.
Задача: Построить проекции точек пересечения прямой EF с пирамидой (рис. 5.8).
Решение:
Через прямую проводим фронтально-проецирующая плоскость Р.
Строим проекции линии пересечения этой плоскости с пирамидой (точки 1, 2, 3).
Точки I и II пересечения сторон треугольника сечения с прямой EF являются точками пересечения этой прямой с гранями многогранника.
Определяем видимость прямой EF относительно плоскостей проекций.
Рис. 5.8. Построение точек пересечения прямой EF
С пирамидой
5.4. Взаимное пересечение многогранников
Линия пересечения двух многогранников может быть построена двумя способами.
Первый способ состоит в определении точек пересечения ребер первого многогранника с гранями второго многогранника и ребер второго с гранями первого, т.е. задача сводится к многократному решению задачи по определению точки пересечения прямой с плоскостью.
Второй способ состоит в определении линий пересечения граней одного многогранника с гранями другого. Задача сводится к определению линии пересечения двух плоскостей. Преимущество отдается тому из способов, который в зависимости от условия задания дает наиболее простое и точное решение. Эти два способа построения линии пересечения двух многогранников часто комбинируют между собой.
Линия пересечения двух многогранников представляется в общем случае в виде пространственных замкнутых ломаных линий. В зависимости от вида многогранников и их взаимного расположения линией пересечения может быть одна, две и более ломаных линий (в частности могут быть и плоские ломаные линии). Отрезки ломаных линий являются отрезками прямых, по которым пересекаются грани двух многогранников. Вершины ломаной линии этой точки пересечения ребер одного многогранника с гранями другого, и ребер второго с гранями первого. Отрезки ломаной линии строятся как отрезки прямых, соединяющих только те пары вершин, которые принадлежат одной и той же грани первого многогранника, а также одной грани второго многогранника. Вершины ломаной линии соединяются при строгом соблюдении последовательности.
Задача: Построить линию пересечения прямой четырехугольной призмы с треугольной пирамидой (рис.5.9).
Рис. 5.9. Построение линии пересечения пирамиды и
призмы
Решение:
Призма своим основанием стоит на горизонтальной плоскости проекций Н. Горизонтальные проекции ее вертикальных ребер вырождаются в точки. Грани боковой поверхности призмы проецируются в отрезки прямых. Линия пересечения многогранников определяется по точкам пересечения ребер каждого из них с гранями другого многогранника. Так, ребро SA пирамиды пересекается с двумя вертикальными гранями призмы в точках 1(1V,1H) и 2(2V,2H).
Ребро SB пирамиды пересекает две вертикальные грани призмы в точках 3(3V ,3H) и 4(4V, 4H) и ребро SC – в точках 5(5V, 5H) и 6(6V, 6H). Из четырех вертикальных ребер призмы только одно пересекает пирамиду. Находим точки его пересечения с гранями пирамиды. Через это ребро и вершину S пирамиды проводим вспомогательную горизонтально проецирующую плоскость Q. На рис.5.9 показан горизонтальный след этой плоскости QH. Плоскость Q пересекает пирамиду по двум прямым линиям SK и SF, которые пересекаются с ребром призмы в точках 7(7V, 7H) и 8(8V, 8H). Последовательность построения точек 7V и 8V на рис.5.9 показана с помощью стрелок.
Соединяя каждые пары точек, принадлежащих одной и той же грани, получаем две ломаные линии пересечения многогранников. Одна из них пространственная ломаная линия 137581, другая – треугольник 246 – плоская ломаная линия лежащая в грани призмы. Видимость линии определяем с помощью конкурирующих точек.