Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экология.docx
Скачиваний:
229
Добавлен:
26.02.2016
Размер:
165.6 Кб
Скачать

26. Экологические и социально-экономические последствия загрязнения окружающей среды

Структура издержек производства. В категорию издержек загрязнения включают: непроизводственный расход ресурсов и расход ресурсов на предотвращение загрязнения.  В тоже время, по нашему мнению, затраты на компенсацию экономических последствий загрязнения (компенсация экономического ущерба) не должны включаться в состав издержек загрязнения, во избежание их повторного учета.

Непроизводственный расход ресурсов, или следствие загрязнения окружающей среды состоит из:

-снижения естественной продуктивности сельскохозяйственных угодий;

-снижения ресурса средств труда вследствие повышенного износа конструкционных материалов;

-непроизводственного использования фонда рабочего времени в результате повышенной заболеваемости населения от воздействия загрязнений;

-убыли материалов, относящихся к категории промежуточного продукта;

-отчуждения земельных площадей под отвалы.

-повышенные затраты на текущий ремонт основных производственных фондов, вследствие ускоренного, по сравнению с нормативным, сроком их выбытия, снижения  ресурса изделий длительного пользования,  что выражается в сокращении длительности межремонтного цикла,  частых отстановок на ремонт;

-повышенные затраты на капитальный ремонт. Рост этих затрат также связан с сокращением длительности межремонтного цикла;

-досрочное выбытие недоамортизированных основных производственных фондов вследствие  ускоренного износа конструкционных материалов, что отражается на прибыли предприятия;

-снижение качества выпускаемой продукции как вид издержек имеет отношение особо чистым и особо точным производством, что даже незначительные   примеси влияют на ход технологического процесса;

-ухудшение использования фонда рабочего времени в следствие воздействия загрязняющих веществ на организм человека. Обуславливается снижением или частичной утратой трудоспособности работающих или неявками на работу в связи с необходимостью ухода за больными. Издержки загрязнения для предприятия в таком случае представляют повышенные потери из-за брака, снижения сменной производительности персонала;

-снижение потребительских свойств и качества исходного сырья и материалов, находящихся на  хранении или в производстве с длительным циклом;

-приостановка работы предприятия в связи с экстремальными условиями окружающей среды.

Например,  сильно загрязненные воды, воздух. Их качество может полностью исключить их применение в технологических процессах. Такие случаи вполне могут иметь место, особенно если рассматривать деятельность предприятий природоэксплуатирующих отраслей: пищевой, химической промышленности, сельского и лесного хозяйства;

27. Шумовое загрязнение окружающей среды. Источники, физические характеристики, нормирование. Методы и средства защиты от шума.

Шумовое загрязнение — раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых организмов ичеловека.

Главным источником шумового загрязнения являются транспортные средства

другими важными источниками шумового загрязнения в городах являются промышленные предприятия, строительные и ремонтные работы, автомобильная сигнализация, собачий лай, шумные люди и т. д.

При нормировании шума используют два метода нормирования: по предельному спек­тру шума и уровню звука в дБ. Первый метод является ос­новным для постоянных шумов и позволяет нормировать уров­ни звукового давления в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Шум на рабочих местах не должен пре­вышать допустимых уровней, соответствующих рекоменда­циям Технического комитета акустики при Международной организации по стандартизации.

Для снижения шума применяют различные методы коллективной защиты: уменьшение уровня шума в источнике его возникновения; рациональное размещение оборудования; борьба с шумом на путях его распространения, в том числе изменение направленности излучения шума, использование средств звукоизоляции, звукопоглощение и установка глушителей шума, в том числе акустическая обработка поверхностей помещения.

Наиболее эффективным средством является борьба с шумом в источнике его возникновения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире использовать принудительное смазывание трущихся поверхностей, применять балансировку вращающихся частей. Снижения аэродинамического шума можно добиться уменьшением скорости газового потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глушителей. Электромагнитные шумы снижают конструктивными изменениями в электрических машинах.

28. Вибрация (от лат. vibratio — колебаться, дрожать) в русском языке имеет синонимы: сопряжение, тряска — и относится к механическим колебаниям. Принято считать, что основным признаком вибрации являются относительно малые отклонения тела или его точек при механических колебаниях. Другим признаком вибрации считается частота перемещений, совершаемых телом или его точками в единицу времени. При колебаниях тела частота может быть очень незначительной (низкой), а при вибрациях - более высокой. Можно привести такой пример: колебания судна при его качке имеют большие отклонения и малые частоты, а вибрация обшивки судна — малые отклонения и высокие частоты.

Вибрациям подвержены упругие тела — здания и сооружения, шины и оборудования, грунты и фундаменты, через которые на значительные расстояния распространяются механические волны, вибрациям подвержен и сам человек, находясь вблизи работающего оборудования (через грунт и фундамент) или работающий с оборудованием (например, рядом с вибраторами для уплотнения бетона).

Нормирование вибрации. Виброзащиту наиболее эффективно можно осуществить на стадии проектирования объекта.

Часто при проектировании не учитываются уровни вибраций, и вопрос о виброзащите решается в эксплуатационный период по измеренному уровню вибраций, что не всегда возможно. Естественно, в этом случае получение исходных данных значительно упрощается, но возникает проблема виброзащиты, особенно это касается оборудования, установленного на фундаментах. Поэтому использование в современном промышленном производстве средств автоматики (станков, машин, оборудования) накладывает на вибрирующие основания достаточно жесткие технические требования.

Обеспечение допустимых параметров вибрации зависит также от конструктивных особенностей проектируемых объектов, в том числе фундаментов, конструкций надземной части здания. Как считают специалисты, важно иметь прогнозируемый уровень вибрации (методику прогнозирования), который бы позволил надежно и достаточно просто оценивать параметры колебаний в зависимости от размеров конструкций.

Следует отметить, что при проектировании объектов параметры вибраций должны регламентироваться следующими нормами: санитарно-гигиеническими и техническими для виброчувствительных машин и для строительных конструкций. От механических колебаний (вибрации) снижаются также прочность, устойчивость и долговечность зданий и самих конструкций, нарушается режим работы приборов и автоматических систем, контролирующих технологические процессы в промышленных зданиях. Можно предположить, что полностью исключить вибрацию и шум в зданиях и сооружениях невозможно. Поэтому для людей, работающих в условиях шума и вибрации, для различных видов машин и технологического оборудования в каждом конкретном случае при проектировании важно установить пределы допустимых параметров этих воздействий.

29. Общая характеристика электромагнитного поля

Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязанные переменные электрическое поле и магнитное поле. Взаимная связь электрического и магнитного полей заключается в том, что всякое изменение одного из них приводит к появлению другого: переменное электрическое поле, порождаемое ускоренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке пространства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источника и не исчезает с устранением источника (например, радиоволны не исчезают с прекращением тока в излучившей их антенне).

Характеристики электромагнитных полей

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Частота электромагнитного поля — это число колебаний поля в секунду. Единицей измерения частоты является герц (Гц) — частота, при которой совершается одно колебание в секунду.

Длина волны — это расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Поляризация — это явление направленного колебания векторов напряженности электрического поля  или напряженности магнитного поля.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источники электромагнитных полей

В целом общий электромагнитный фон состоит из источников естественного (электрические и магнитные поля Земли, радиоизлучения Солнца и галактик) и искусственного (антропогенного) происхождения (телевизионные и радиостанции, линии электропередачи, электробытовая техника). Источниками электромагнитных излучений также служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см2.

Воздействие электромагнитных полей на организм человека

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

Нормирование электромагнитных полей

ЭМП любой частоты имеет 3 условные зоны в зависимости от расстояния X до источника:

•           Зону индукции (пространство с радиусом Х 2π);

•           Промежуточную зону (зону дифракции);

•           Волновую зону, Х2π

Рабочие места вблизи источников ВЧ полей попадают в зону индукции. Для таких источников уровни облучений нормированы величиной напряжённости электрического Е(Вм) и магнитного Н(А/м) полей.

ГОСТом 12.1.006-84 установлены ПДУ на рабочем месте в течении всего рабочего дня:

F,МГц   Е .,В/м

F,Мгц Н .,А/м

0,063

3,030  50

20        0,061,5

3050   5

0,3

3050   10                       

50300 5                         

Таблица 1. ПДУ источников ВЧ полей

           

Работающие с генератором СВЧ попадают в волновую зону. В этих случаях нормируется энергетическая нагрузка на организм человека W (мкВт*ч/см.кв.). W = 200 мкВт*ч/см.кв. – для всех случаев облучения, исключая облучение от врвщающихся и сканирующих антенн – для них W = 2000 мкВт*ч/см.кв. Предельно допустимую плотность потока энергии (ПДУ) σдоп (мкВт/см.кв) вычисляются по формуле

σдоп = W / Т,

где  Т – время работы в часах в течении рабочего дня.

Во всех случаях σдоп  ≤ 1000 мкВт/см.кв.

Национальные системы стандартов являются основой для реализации принципов электромагнитной безопасности. Как правило, системы стандартов включают в себя нормативы ограничивающие уровни электрических полей (ЭП), магнитных полей (МП) и электромагнитных полей (ЭМП) различных частотных диапазонов путем введения предельно допустимых уровней воздействия (ПДУ) для различных условий облучения и различных контингентов.

В России система стандартов по электромагнитной безопасности складывается из Государственных стандартов (ГОСТ) и Санитарных правил и норм (СанПиН). Это взаимосвязанные документы, являющиеся обязательными для исполнения на всей территории России.

Государственные стандарты по нормированию допустимых уровней воздействия электромагнитных полей входят в группу Системы стандартов безопасности труда - комплекс стандартов, содержащих требования, нормы и правила, направленных на обеспечение безопасности, сохранение здоровья и работоспособности человека в процессе труда. Они являются наиболее общими документами и содержат:

•           требования по видам соответствующих опасных и вредных факторов;

•           предельно допустимые значения параметров и характеристик;

•           общие подходы к методам контроля нормируемых параметров и методы защиты работающих.

Виды источников электромагнитных полей искусственного происхождения

К искусственным источникам электромагнитных полей, которые делятся на две группы, относятся:

•           устройства специально созданные для излучения электромагнитной энергии (радио и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические приборы, системы радиосвязи и т. п.);

•           устройства, не предназначенные для излучения электромагнитной энергии в пространство (Линии электропередач и трансформаторные подстанции, бытовая и организационная техника и т. п.);