Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метода ТМ.doc
Скачиваний:
246
Добавлен:
24.02.2016
Размер:
8.95 Mб
Скачать

3.3. Расчет передач

3.3.1. Ременные передачи

В зависимости от типа выбранной или заданной ременной передачи (плоская или клиноременная, зубчатыми или поликлиновыми ремнями) исходные данные будут отличаться. Например, для расчета передач плоским ремнем необходимо знать передаваемую передачей мощность, частоты вращения валов ведущего и ведомого шкивов, угол наклона передачи к горизонту, тип электродвигателя, способ натяжения ремня, условия работы, режим работы (число смен) и др.

В результате расчета определяются тип и размеры ремня, которые согласуются со стандартами: ГОСТ 2.3831–79 – для ремней прорези-ненных; ГОСТ 1284.1–89 – для ремней клиновых; ОСТ 38.05114–76 – для ремней зубчатых; РТМ38–40528–74 – для ремней поликлиновых. Основные размеры шкивов плоскоременных передач согласуются с ГОСТ 17383–80, клиноременных передач – с ГОСТ 20898–88, передач поликлиновыми и зубчатыми ремнями – с вышеупомянутыми стандартами. Эскиз ведомого шкива с расчетными размерами изображается в пояснительной записке (рис. 3.4).

Рис. 3.4. Обод шкива клиноременной передачи

Эскиз необходим при разработке компоновочной схемы привода и рабочего чертежа шкива.

Л и т е р а т у р а: [1–6].

3.3.2. Цепные передачи

Типовые исходные данные для расчета: мощность на ведущей звездочке, передаточное число передачи, предельная частота вращения ведущей звёздочки, наклон межосевой линии к горизонту, способ смазки и натяжения цепи, условия работы, характер передаваемой нагрузки, режим работы (число смен). Для определения оптимального значения шага цепи необходимо иметь несколько вариантов расчетов для значений шагов, близких к расчетной величине. Рациональней считается передача, в которой используется цепь с меньшим шагом [4, 5]. Для уменьшения радиальных габаритов можно использовать многорядные цепи с малыми шагами. Принятые размеры роликовой цепи согласуются с ГОСТ 13568–97 (ИСО 606–94), зубчатой цепи – с ГОСТ 13552–81.

Размеры профиля зубьев звездочки в диаметральном и осевом сечении определяются в соответствии с ГОСТ 591–69. Профиль изображается в пояснительной записке.

Осевые размеры необходимы для построения компоновочной схемы и разработки рабочего чертежа звездочки.

Л и т е р а т у р а: [1–6].

Рис. 3.5. Профиль зуба звездочки

3.3.3. Зубчатые передачи

Важным этапом при проектировании и расчете зубчатых передач является подбор материала зубчатых колес и способа их термообработки. Необходимую твердость колес и соответствующий вариант термической обработки выбирают в зависимости от вида, условий эксплуатации и требований к габаритам передачи (табл. 3.4, [1]).

Для редукторов, к размерам которых не предъявляют особых требований, на практике применяют следующие марки сталей и варианты термической обработки колес [2]:

I (стали 45, 40Х, 40ХН и др.) – термическая обработка колеса – улучшение, твердость 235–262 НВ; термическая обработка шестерни – улучшение, твердость 262–302 НВ;

II (стали 40Х, 40ХН, 35 ХМ и др.) – термическая обработка колеса – улучшение, твердость 269–302 НВ; термическая обработка шестерни – улучшение и закалка ТВЧ, твердость поверхности определяется маркой стали 45–53 HRC (табл. 3.4);

III (стали 40Х, 40ХН, 35 ХМ и др.) термическая обработка колеса и шестерни – улучшение с последующей закалкой токами высокой частоты (ТВЧ). Твердость поверхности зубьев 45–53 HRC;

IV – термическая обработка колеса – улучшение с последующей закалкой ТВЧ, твердость поверхности определяется маркой стали (40Х, 40ХН, 35 ХМ и др.) 45–53 HRC (табл. 3.4), термическая обработка шестерни – улучшение, цементация и закалка, применяемые стали 20Х, 20ХН2М, 18ХГТ, 25ХГМ, твердость поверхности зубьев после термообработки 56–63 HRC;

V (стали 20Х, 20ХН2М, 18ХГТ, 25ХГМ и др.) – термическая обработка колеса и шестерни – улучшение, цементация и закалка, твердость поверхности зубьев после термообработки 56–63 HRC.

Кроме цементации для повышения поверхностной твердости применяют нитроцементацию и азотирование. Чем выше твердость поверхности, тем выше допускаемые напряжения передачи и меньше ее массогабаритные параметры.

Для лучшей приработки зубьев и равномерного их изнашивания, а также для выравнивания срока службы шестерни по отношению к колесу для прямозубых передач рекомендуется твердость рабочих поверхностей зубьев шестерни увеличивать по сравнению с колесом на 20–50 единиц НВ. Для косозубых и шевронных передач, а также для конических передач с круговыми зубьями отличие в значениях твердостей должно составлять 20–80 единиц НВ [4].

Таблица 3.4

Механические свойства сталей,

применяемых для изготовления зубчатых колес

Марка стали

Диаметр заготовки, мм

Предел

прочности

в, МПа

Предел

текучести

т, МПа

Твердость,

НВ или HRC (средняя)

Термообработка

45

100–500

570

290

190

Нормализация

45

До 90

90–120

Свыше 120

780

730

690

440

390

340

230

210

200

Улучшение

35ХМ

До 140

Свыше 140

900

900

630

740

260

250

40Х

До 125

120–160

Свыше 160

930

880

830

690

590

540

300

270

245

40ХН

До 150

150–180

Свыше 180

930

880

835

690

590

540

280

265

250

40Л

45Л

520

540

290

310

160

180

Нормализация

35ГЛ

35ХГСЛ

590

790

340

590

190

220

Улучшение

40ХН

1600

1400

52

Закалка ТВЧ

35ХМ

1600

1400

50

Закалка ТВЧ

25ХГТ

1150

950

60

Цементация

Назначение материала и вид термической обработки зубчатых колес обосновываются в пояснительной записке.

В курсовом проекте, как правило, предварительно выполняют проектировочные расчеты, из которых определяют геометрические параметры передачи, а затем – проверочные расчеты по различным критериям работоспособности. Для проектных расчетов закрытых передач кроме уже известных кинематических и силовых параметров необходимо выбрать коэффициенты ψbd или ψba.

Коэффициент ширины колеса относительно межосевого расстояния awba = b2 / aw) принимают из ряда стандартных чисел: 0,1; 0,125; 0,16; 0,2; 0,25; 0,315; 0,4; 0,5; 0,63; 0,8 в зависимости от положения колес относительно опор [2, 4]:

– при симметричном расположении ψba = 0,315–0,4;

– при несимметричном расположении ψba = 0,25–0,315;

– при консольном расположении одного или обоих колес ψba = = 0,2 – 0,25;

– для шевронных передач ψba = 0,4–0,63;

– для открытых передач и коробок скоростей ψba = 0,1–0,2 (меньшее значение ψba принимается для передач с твердостью зубьев свыше 45 HRCэ).

Увеличение значения ψba позволяет уменьшить радиальные габариты и массу передачи, но требует повышенной жесткости и точности конструкции для обеспечения более равномерного распределения нагрузки по ширине венца колеса.

Коэффициент ширины колеса относительно диаметра шестерни

ψbd = b2 / d1

может быть ориентировочно определен по формуле ψbd = 0,5  ψba (u ± 1).

Знак «плюс» применяется для передач внешнего зацепления, а знак «минус» – для передач внутреннего зацепления.

После выбора материала и твердости зубчатых колес определяют допускаемые напряжения изгиба и контактные, величина которых оказывает влияние на массогеометрические параметры передачи.

Далее из условия контактной (для закрытых передач) или изгибной прочности (для открытых или тяжелонагруженых передач, имеющих колеса высокой твердости) рассчитываются геометрические параметры.

Определение допускаемых напряжений и расчет на прочность эвольвентных зубчатых цилиндрических передач внешнего зацепления производится по ГОСТ 21354–87.

Примеры расчета цилиндрической косозубой и конической прямозубой передач приведены в разделах 5 и 6.

Л и т е р а т у р а: [1–7].