Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

posobia2 / Лекции по биоорганической химии (2011 г

.).pdf
Скачиваний:
152
Добавлен:
19.02.2016
Размер:
2.12 Mб
Скачать

Некоторые аминокислоты (цистин, треонин, изолейцин и гидроксипролин) имеют два хиральных центра и могут существовать в виде четырех стереоизомеров. Однако для цистина число возможных стереоизомеров меньше из-за наличия плоскости симметрии у мезоформы, которая оптически неактивна.

 

 

 

 

COOH

 

 

 

 

 

 

COOH

 

 

 

 

COOH

 

 

 

COOH

H2N

 

 

 

 

H

 

 

H

 

 

 

 

 

 

 

NH2

 

H

 

 

 

NH2

H2N

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

 

 

 

CH2

 

 

 

 

 

CH2

 

 

 

 

 

 

CH2

 

 

 

 

S

 

 

 

 

 

 

S

 

 

 

 

S

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

S

 

 

 

 

S

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

 

 

 

CH2

 

 

 

 

 

CH2

 

 

 

 

CH2

H

 

 

 

 

 

NH2

 

H2N

 

 

 

 

 

 

 

H

 

H

 

 

 

NH2

H2N

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

COOH

 

 

 

 

COOH

 

 

 

COOH

 

L-цистин

 

 

 

 

 

 

D-цистин

 

 

 

 

мезоформа цистина

 

 

 

 

-Аминокислоты в свободном виде представляют собой твердые кристаллические вещества, хорошо растворимые в воде, плохо растворимые в спирте, не растворимые в эфире и других неполярных органических растворителях. -Аминокислоты характеризуются высокими температурами плавления, что обусловлено их существованием в виде цвиттер-ионов (биполярных ионов):

+

_

H3N

 

 

CH

 

COO

 

 

 

 

 

 

 

 

R

Наличие как основной (NH2), так и кислотной (СООН) групп в молекуле означает, что в водном растворе реальное строение частиц зависит от значения рН. При низких значениях рН карбоксильная группа находится в недиссоциированном состоянии, аминогруппа – в протонированной форме.

171

H2N CH COO

+ OH-

 

+ H+

 

H3N CH COO

H N CH COOH

 

_ H2O

 

3

R

R

R

 

При высоких значениях рН аминокислоты в водных растворах находятся в виде аминокарбоксилат-анионов. При промежуточных значениях рН основная частица, находящаяся в растворе в существенных количествах, – это цвиттер-ион, молекулярная форма RCH(NH2)CООН не присутствует в сколько-нибудь значительной степени. На существовании в сильно кислой среде аминокислот в катионной форме и в щелочной среде – в анионной форме основано разделение аминокислот методом электрофореза: катионы под действием электрического тока перемещаются к катоду (отрицательно заряженному электроду), анионы – к аноду (положительно заряженному электроду). рН раствора аминокислоты, при котором средний заряд молекулы равен нулю, называется изоэлектрической точкой (рI). Состояние аминокислоты, в котором ее заряд равен нулю, называется изоэлектрическим состоянием (т.е. в растворе концентрация биполярных ионов аминокислоты максимальна, а концентрации катионных и анионных форм аминокислоты минимальны и равны между собой). Для моноаминомонокарбоновых кислот значения рН, при котором они находятся в изоэлектрическом состоянии, лежат в пределах 5.5-6.3, что близко к нейтральной среде, поэтому такие аминокислоты называют нейтральными. Для моноаминодикарбоновых кислот значения рН, при котором они находятся в изоэлектрическом состоянии, лежат в сильно кислой среде (рI 3.1), поэтому такие аминокислоты называют кислыми. У диаминомонокарбоновых кислот значения рН в изоэлектрическом

172

состоянии лежат в сильно щелочной среде (рI 9.8), такие аминокислоты называют основными.

В реакциях аминокислоты проявляют себя как гетерофункциональные соединения, т.е. реагируют в зависимости от реакционного партнера либо одной функциональной группой, либо обе функциональные группы вступают в реакцию с реагентом.

Качественной реакцией на -аминокислоты является их взаимодействие со свежеполученным гидроксидом меди (II), в результате которого образуется внутрикомплексное соединение синефиолетового цвета:

 

O

 

 

R

 

NH2

O

O

2 H N CH C +

Cu(OH)

 

 

 

 

 

C

_

 

 

 

Cu

 

2

OH

2

2H2O

 

 

 

R

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

O

O

NH2

R

 

 

 

 

 

Реакции по аминогруппе:

Под действием ацилирующих агентов аминокислоты легко подвергаются ацилированию с образованием амидов:

 

 

 

 

 

 

 

O

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

N

 

CH

 

C

+ (CH CO) O

 

 

 

 

 

 

 

 

 

 

 

 

+

CH COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3 C NH

CH C

2

 

 

 

 

 

 

3 2

 

3

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

R

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Превращение аминогруппы в амидную используется для защиты аминогруппы при синтезе пептидов и белков.

Как амины, аминокислоты подвергаются алкилированию под действием галогеналканов:

 

 

 

 

 

 

O

AgOH

 

 

 

 

 

 

 

 

O

H2N

 

CH

 

C

+ CH I

H C

 

NH

 

CH

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

_

AgI,H2O

3

 

 

 

 

 

 

 

 

 

 

R

OH

 

 

 

 

 

R

OH

 

 

 

 

 

 

 

 

 

 

173

Аминокислоты реагируют с альдегидами, образуя аминоспирты, которые легко могут быть превращены в имины (основания Шиффа). Реакция аминокислот с формальдегидом приводит к образованию аминоспиртов, которые можно оттитровывать, используя метод кислотно-основного титрования. Непосредственное титрование аминокислот щелочью не может быть использовано для их количественного определения вследствие амфотерности аминокислот:

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

O

H

 

C +

H N

 

CH

 

C

 

HO

 

CH

 

NH

 

CH

 

C

 

_

 

CH2

 

N

 

 

CH

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

2

 

 

 

 

 

OH

2

 

 

 

 

 

 

 

H O

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

2

 

 

 

 

R

 

 

 

 

 

R

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аминокислоты могут вступать в реакции дезаминирования. В лабораторных условиях (in vitro) дезаминирование происходит под действием азотистой кислоты:

 

 

 

 

 

O

 

 

 

 

 

 

O

 

H2N

 

 

CH

 

C + HNO2

R

 

 

CH

 

C

+ N2

+ H O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

OH

2

 

 

R

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

В животных и растительных организмах дезаминирование происходит с участием ферментов и может быть окислительным или неокислительным.

Неокислительное дезаминирование приводит к образованию , - непредельных кислот и отщеплению аммиака:

 

 

 

 

 

O

аспартаза

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H N

 

CH

 

C

 

C

 

CH

 

CH

 

C

+ NH

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

HO

OH

 

 

 

 

 

 

 

CH2

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

 

 

 

Окислительное дезаминирование идет с участием кофермента НАД+ и оксидаз – ферментов, катализирующих окислительновосстановительные реакции.

174

O

 

 

 

 

O

+

+ O

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

O

C

 

CH2

 

 

CH

 

C

 

НАД

 

 

 

 

 

 

 

 

 

 

 

+ H2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_ НАД Н

C

 

CH

 

C

 

C

 

C

 

CH

 

C

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

2

 

 

 

 

 

 

_

NH3

 

2

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

OH

NH2

 

HO

 

 

 

 

 

NH

 

HO

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- иминокислота

 

 

 

 

кетокислота

 

-Аминокислоты

реагируют

 

с нингидрином

с

образованием

продукта сине-фиолетового цвета, что используется как общая качественная реакция на -аминкислоты:

 

O

O

OH

NH2 CH COOH + 2

OH

 

N

 

_ CO , RCHO,

 

OH

 

 

2

 

R

 

_ 3 H O

 

 

 

2

 

 

O

O

O

Взаимодействие -аминокислот с 2,4-динитрофторбензолом приводит к образованию динитрофенильных производных, окрашенных в желтый цвет. Эти соединения легко идентифицируются хроматографическими методами по значениям Rf.

NH

 

CH

 

COOH + F

 

 

 

 

 

 

 

NO

OH-

O N

 

 

 

 

 

 

 

NH

 

CH

 

COOH

 

 

 

 

 

 

 

 

 

_ HF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

Взаимодействие с 2,4-динитрофторбензолом ранее использовалось для идентификации N-концевой аминокислоты белков и пептидов. Для этого на пептид действовали 2,4-динитрофторбензолом, а затем продукт подвергали гидролизу, получая в итоге смесь - аминокислот и концевую аминокислоту в виде динитрофенильного производного. При помощи хроматографического анализа легко идентифицировали N-концевую кислоту по ее динитрофенильному производному и определяли аминокислотный состав пептида. Однако аминокислотная последовательность в этом случае оставалась

175

неизвестной. Только для дипептидов, используя данный способ, можно было установить их аминокислотную последовательность.

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

F + NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO

 

 

 

 

CH

 

 

C

 

 

 

NH

 

CH

 

 

 

C

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

NH

 

 

CH

 

 

C

 

NH

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

CH

 

 

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

+ H O,H+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

NH

 

 

CH

 

COOH

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

O N

 

 

 

 

 

 

 

NH

 

CH

 

COOH + NH

2

 

CH

 

COOH + NH

 

 

CH

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

R2

 

 

R3

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Один из универсальных способов установления аминокислотной последовательности основан на взаимодействии -аминокислот с фенилизотиоцианатом:

 

 

 

 

 

S

 

 

 

S

 

 

C H

N C

S + NH CH COOH

C H NH C NH CH COOH

C H N

NH

6

5

2

6 5

_ H O 6 5

 

 

 

R

R

2

 

 

 

 

 

 

 

 

 

O

R

На первом этапе реакции идет нуклеофильное присоединение – аминогруппа аминокислоты присоединяется к атому углерода за счет разрыва двойной связи углерод-азот, на втором этапе происходит внутримолекулярное нуклеофильное замещение, приводящее к образованию фенилтиогидантоина – циклического амида. Для определения аминокислотной последовательности пептида его подвергают воздействию фенилизотиоцианата в щелочной среде. Как и в предыдущем примере, сначала происходит нуклеофильное

176

присоединение к фенилизотиоцианату свободной аминогруппы N- концевой аминокислоты.

 

 

 

O

 

 

 

O

 

 

 

 

C6H5 N C

S + NH2 CH C

NH

CH

C

NH

CH

COOH

 

 

R1

 

 

 

R2

 

 

 

R3

 

 

S

 

 

O

 

 

 

O

 

 

 

C6H5 NH C

NH

CH

C

NH CH

C

NH

CH COOH

 

 

 

R1

 

 

R2

 

 

 

R3

 

S

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C6H5

N

NH

+ NH2

CH

C

NH

CH

COOH

 

 

 

 

 

R2

 

 

 

R3

 

 

 

O

R1

 

 

 

 

 

 

 

 

 

Дальнейшая обработка слабой кислотой без нагревания приводит к отщеплению от пептидной цепи N-концевой аминокислоты в виде фенилтиогидантоинового (ФТГ) производного, которое затем идентифицируется хроматографически. Последующее добавление к укороченному на одну аминокислоту пептиду фенилизотиоцианата в конечном итоге опять приводит к отщеплению аминокислоты с N-конца в виде ФТГ-производного. Таким образом можно определить аминокислотную последовательность, идентифицируя отщепляющиеся аминокислоты в виде их ФТГ-производных.

Реакции аминокислот по карбоксильной группе

Аминокислоты образуют сложные эфиры, реагируя с избытком спирта в присутствии HCl, как катализатора. Реакция протекает в спиртовой среде, а образующийся сложный эфир в виде соли выпадает

177

в осадок. Действуя более сильными основаниями на аммониевую соль сложного эфира, можно выделить сложный эфир в свободном виде:

NH2

 

 

CH

 

COOH + C2H5OH

HCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NaOH

 

 

 

 

 

 

 

 

 

NH3

 

CH

 

COOC2H5

Cl

 

NH

 

CH

 

COOC H

 

 

 

_

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_

 

2

 

2 5

 

 

R

 

 

 

 

 

 

 

 

R

 

NaCl,H2O

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Образование сложных эфиров используется для защиты карбоксильной группы при синтезе пептидов.

Карбоксильная группа аминокислот может быть превращена в ангидридную или галогенангидридную группу, но при проведении этих реакций необходимо предварительно защитить аминогруппу:

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

(CH3CO)2O

 

 

 

 

 

 

 

 

 

 

SOCl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

CH

 

COOH _ CH3COOH H3C

 

C

 

NH

 

 

CH

 

COOH _ SO , HCl

H3C

 

C

 

NH

 

 

CH

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

R

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

 

 

 

O

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3C

 

C

 

NH

 

 

CH

 

COOH +

H5C2O

 

C

_

 

H C

 

C

 

NH

 

CH

 

C

 

O

 

C

 

OC H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

HCl,

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

этиловый эфир

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

хлормуравьиной кислоты

 

 

 

 

 

 

 

 

 

смешанный ангидрид

Превращение карбоксильной группы в более реакционные ангидридную или галогенангидридную группы используют для активации карбоксильной группы при синтезе белков и пептидов.

Избыток аминокислот в организме уменьшается не только за счет реакций дезаминирования, но и в результате реакций декарбоксилирования. Декарбоксилирование -аминокислот протекает легко, что объясняется наличием у -углеродного атома двух электроноакцепторных заместителей (NH2- и СООН-группы). Вне организма (in vitro) декарбоксилирование происходит при нагревании аминокислот в присутствии щелочей, в организме (in vivo) – с участием ферментов – декарбоксилаз, приводя к образованию биогенных аминов:

178

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

CH

 

C

 

OH

NH

 

CH

 

CH OH

+ CO

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

2

 

 

2

 

 

 

 

 

 

 

 

СH2OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

CH2

 

CH

 

COOH

 

N

 

 

 

 

 

CH2

 

CH2

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Стратегия пептидного синтеза

Пептиды и белки часто представляют как результат реакции поликонденсации -аминокислот. В действительности же, на практике реакцию поликонденсации не используют, так как даже при синтезе дипептидов этим способом возникают проблемы с аминокислотной последовательностью и выходом нужного дипептида.

При взаимодействии двух разных аминокислот образуются семь дипептидов (без учета трипептидов, тетрапептидов и т.д.), разных по строению и аминокислотной последовательности, что существенно уменьшает количество нужного продукта.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

CH

 

 

 

 

COOH + NH2

 

 

 

 

CH

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

CH

 

 

 

C

 

 

NH

 

 

 

CH

 

COOH +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

CH

 

 

 

C

 

 

NH

 

 

 

 

CH

 

 

 

COOH + NH2

 

 

 

CH

 

C

 

NH

 

 

 

 

CH

 

 

COOH +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

R1

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

NH

NH2

 

 

 

 

CH

 

 

 

C

 

 

NH

 

 

 

CH

 

 

 

COOH

+

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

O

Образование пептидной связи не представляет проблемы – пептидные связи легко образуются при взаимодействии амина или аминокислоты с активированной карбоксильной группой (ангидридной или галогенангидридной) другого соединения. Проблема в синтезе

179

белков и пептидов заключается в получении пептида или белка с нужной аминокислотной последовательностью. Чтобы преодолеть эти трудности, пептид синтезируют по стадиям, на каждой из которых приходится защищать (блокировать) одни функциональные группы и активировать другие. Активными должны быть функциональные группы, участвующие в образовании нужной амидной связи – карбоксильная группа одной молекулы с защищенной аминогруппой и аминогруппа другой молекулы с защищенной карбоксильной группой. Для защиты карбоксильной группы обычно используют ее перевод в сложный эфир, так как сложные эфиры легче гидролизуются, чем амиды, а удалить защитную группу можно, не затрагивая пептидную связь. Для защиты аминогруппы используют ее превращение в особые типы амидов, которые можно разрушать (снимать защиту) в условиях, в которых пептидные и амидные связи не затрагиваются. Для активации карбоксильной группы используют ее превращение в галогенангидридную группу или в смешанный ангидрид. Если боковые цепи аминокислот содержат реакционные функциональные группы, их также надо защищать.

Рассмотрим стратегию пептидного синтеза на примере образования аланилглицина.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

CH

 

COOH

NH2

 

CH2

 

COOH

NH2

 

 

CH

 

C

 

NH

 

CH2

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

Глицин

 

 

CH3

 

Аланин

 

 

 

 

 

Аланилглицин

Для получения такой последовательности соединения аминокислот необходимо:

180