Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

M00920

.pdf
Скачиваний:
6
Добавлен:
07.02.2016
Размер:
543.84 Кб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

 

 

= −6

 

 

 

+10

 

 

 

 

 

 

 

 

 

 

 

 

 

= −4

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

a

b

BC

a

b

CA

a

b

21.

 

 

 

 

 

= −6

 

 

 

7

 

 

 

 

 

 

 

 

 

 

=18

 

 

 

 

+ 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −12

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

22.

 

 

 

 

 

= −

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=18

 

 

 

 

+ 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −17

 

+ 3

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

23.

 

 

 

 

 

= −4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2

 

 

 

 

 

+ 7

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

24.

 

 

 

 

 

= −5

 

 

7

 

 

 

 

 

 

 

 

 

 

 

= −6

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

=11

 

 

 

 

 

 

 

 

+ 5

 

 

 

 

 

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

25.

 

 

 

 

 

=5

 

 

 

 

 

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −2

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

= −3

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

26.

 

 

 

 

 

= 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −6

 

 

+18

 

 

 

 

 

 

 

 

= −3

 

 

 

 

 

 

 

 

17

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

27.

 

 

 

 

 

= −3

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −2

 

 

+ 4

 

 

 

 

 

 

 

 

 

 

=5

 

 

 

 

 

 

5

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

28.

 

 

 

 

 

= −2

 

+ 6

 

 

 

 

 

 

 

 

 

 

= −8

 

+ 4

 

 

 

 

 

 

 

 

=10

 

 

 

 

 

 

 

10

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

29.

 

 

 

 

 

=3

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2

 

 

+ 6

 

 

 

 

 

 

 

 

 

= −5

 

 

 

 

 

 

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

30.

 

 

 

 

 

=5

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

= 2

 

 

2

 

 

 

 

 

 

 

 

 

= −7

 

 

 

+ 9

 

 

 

AB

a

b

 

 

 

 

 

 

BC

a

b

CA

a

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вектори:

 

= α

 

+ β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.8. Дано

a

m

n

та

 

=γ

 

+δ

 

, де

 

 

 

 

 

 

 

b

m

n

 

 

 

 

 

= k,

 

 

 

 

 

 

 

= l, (

 

$

 

 

) = φ. Знайти:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

n

 

m

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) (λ

 

+ µ

 

)(να

+ τ

 

), б) npbr (να

 

 

), в)

cos(

 

$τ

 

).

a

b

b

+τ

 

a,

b

b

1 .α=-5, β=-4, γ=3, δ= 6, к=3, l=5,ϕ= 5π/3,λ=-2, µ=1/3,ν=1,τ= 2. 2 α= -2, β= 3, γ= 4, δ= -1, к= 1, l= 3,ϕ= π ,λ=3 µ= 2,ν=-2 ,τ=4. 3. α=5, β=-2, γ=-3, δ=-1, к= 4, l=5,ϕ=4π/3 ,λ=2 µ=3 ,ν= -1,τ=5. 4.α=5, β= 2, γ=-6, δ=-4, к=3, l= 2,ϕ=5π/3,λ=-1, µ=1/2,ν= 2,τ=3. 5.α= 3, β=-2, γ= -4, δ= 5, к= 2, l= 3,ϕ= π/3,λ=2 , µ= -3,ν= 5,τ=1. 6.α=2, β= -5, γ=-3, δ= 4, к= 2, l= 4,ϕ=2π/3,λ=3 , µ=-4 ,ν=2 ,τ=3.

7.α= 3, β= 2, γ=-4, δ= -2, к= 2, l= 5,ϕ= 4π/3,λ= 1, µ=-3 ,ν=0, τ=-1/2. 8.α= 5, β= 2, γ= 1, δ= -4, к= 3, l= 2,ϕ= π,λ= 1,µ=-2 ,ν=3,τ=-4. 9.α=-3, β=-2, γ= 1, δ= 5, к=3 , l= 6,ϕ= 4π/3,λ=-1, µ= 2,ν= 1,τ=1.

42

10.α= 5, β=-3, γ= 4, δ= 2, к= 4, l= 1,ϕ=2π/3,λ= 2, µ=-1/2,ν=3, τ=0.

11.α=-2, β=3, γ=3, δ=-6, к=6, l=3,ϕ=5π/3,λ=3, µ=-1/3,ν= 1,τ=2.

12α=-2, β=-4, γ=3, δ=1, к=3, l=2,ϕ=7π/3,λ=-1/2, µ=3,ν= 1,τ=2.

13.α=4, β=3, γ=-1, δ=2, к=4, l=5,ϕ=3π/2,λ= 2, µ= -3,ν= 1,τ=2. 14.α=-2, β= 3, γ= 5, δ=1, к= 2, l= 5,ϕ= 2π, λ=-3 , µ= 4,ν= 2,τ=3. 15.α=4, β=-3, γ= 5, δ=2, к=4, l= 7,ϕ=4π/3 ,λ=-3 ,µ=2 ,ν= 2,τ=-1. 16.α=-5, β= 3, γ=2, δ= 4, к=5, l= 4, ϕ=π, λ=-3, µ=1/2 ,ν= -1,τ=1.

17.α= 5, β= -2, γ= 3, δ= 4, к= 2, l= 5, ϕ= π/2, λ=2 , µ= 3,ν=1 τ=-2. 18.α= 7, β= -3, γ= 2, δ= 6, к= 3, l= 4, ϕ= 5π/3, λ= 3, µ= -1/2,ν=2 τ=1. 19.α= 4, β= -5, γ=-1, δ= 3, к= 6, l= 3, ϕ= 2π/3, λ= 2, µ= -5,ν=1 τ=2. 20.α= 3, β= -5, γ= -2, δ= 3, к= 1, l=6 , ϕ= 3π/2, λ= 4, µ=5 ,ν=1 , τ=-2. 21.α= -5, β= -6, γ= 2, δ= 7, к= 2, l= 7, ϕ= π, λ= -2, µ= 5,ν=1 τ=3. 22.α=-7, β= 2, γ= 4, δ= 6, к= 2, l= 9, ϕ=π/3, λ= 1,µ= 2,ν=-1,τ=3. 23.α=5, β= 4, γ=-6, δ= 2, к= 2, l= 9, ϕ=2π/3, λ=3, µ= 2,ν= 1, τ=-1/2. 24.α=-5, β=-7, γ= -3, δ=2, к=2, l=11, ϕ=3π/2, λ=-3 ,µ=4, ν=-1,τ=2. 25.α=5, β=-8, γ= -2, δ=3, к= 4, l= 3,ϕ=4π/3,λ= 2, µ=-3,ν= 1,τ=2. 26.α=-3, β=5, γ=1, δ=7, к= 4, l= 6, ϕ= 5π/3, λ= -2, µ= 3,ν= 3, τ=-2. 27.α=-3, β= 4, γ= 5, δ= -6, к= 4, l= 5,ϕ= π, λ= 2,µ= 3,ν= -3,τ=-1 28.α=6, β=-7, γ=-1, δ=-3, к=2, l= 6, ϕ=4π/3, λ=3,µ=-2,ν= 1,τ=4. 29.α=5, β=3, γ=-4, δ=-2, к=6, l=3,ϕ=5π/3, λ=-2, µ =-1/2,ν=3 ,τ=2. 30.α=4, β=-3, γ=-2, δ=6, к=4, l=7,ϕ=π/3, λ=2, µ= -1/2,ν= 3,τ=2.

43

2.2.9. Визначити при якому значенні α вектори а та в

взаємно перпендикулярні.

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

= 7 i

 

 

 

 

 

 

+ j + k

b = 2i 3 j +αk

2.

 

 

= 3i + 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 7i 5

 

 

 

 

 

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

j

k

b

 

 

 

j

k

3.

 

= −4i 3

 

 

 

 

 

 

 

 

 

 

 

+ 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 6i 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+α

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

j

k

b

 

 

 

 

 

 

j

k

4.

 

=αi 2

 

 

 

 

 

 

 

+ 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 5i +

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

j

k

b

j

k

5.

 

= −2i +α

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −6i +

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

j

k

b

 

 

j

k

6.

 

=12i 4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 4i + 9

 

 

 

 

 

 

 

 

 

 

 

+α

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

j

k

b

 

 

j

k

7.

 

= −5i 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 7

 

 

 

 

 

 

 

 

 

 

 

=αi + 7

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

j

k

b

j

k

8.

 

= −6i + 5

 

 

 

 

 

 

 

+α

 

 

 

 

 

 

 

= −16i 8

 

 

 

 

7

 

 

 

a

 

 

 

j

k

b

 

j

k

9.

 

= −4i + 5

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

=αi 6

 

 

 

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

a

 

 

 

j

k

b

j

k

10.

 

=αi + 2

 

 

 

+13

 

 

 

 

 

 

= −2i 3

 

 

 

 

+ 2

 

 

 

 

 

 

a

j

k

b

 

j

k

11.

 

= −i + 2

 

 

+ 2

 

 

 

 

 

 

 

 

=12i α

 

 

 

 

5

 

 

 

 

 

 

a

 

j

k

b

j

k

12.

 

= −7i 11

 

+

 

 

 

 

 

 

= −3i + 3

 

 

 

+α

 

 

 

 

 

a

j

k

b

 

j

k

13.

 

=αi + 8

 

 

 

 

 

 

 

 

 

 

= 3i + 5

 

 

 

 

+

 

 

 

 

 

 

a

j

k

b

 

j

k

14.

 

= −5i +

 

7

 

 

 

 

 

= −7i +α

 

+ 7

 

 

a

j

k

b

j

k

15.

 

=15i 6

 

+

 

 

 

 

= −i 5

 

+α

 

 

a

j

k

b

j

k

Перевірити перпендикулярність векторів a і b .

16.

 

=( 2, -3,-1)

 

= ( 7, 5, -1 )

a

b

 

 

 

 

 

44

17.

 

 

= ( 7, -5, 2 )

 

 

= ( 3, 5, 3 )

a

b

18.

 

= ( 6 , -17, -3 )

 

 

= (-4, -3, 9)

a

b

19.

 

= (-6, 2, -7)

 

 

= ( -2, -5, 1 )

a

b

20.

 

= ( 5, 1, -3 )

 

 

= ( 4, -2, 6 )

a

b

21.

 

= ( 4, 9, 3 )

 

 

= ( 12, -4, -2 )

a

b

22.

 

= (-7, 7, -2 )

 

 

= (-5, -3, 7 )

a

b

23.

 

= ( 10, -2, 13 )

 

 

= (-4, 3, 3 )

a

b

24.

 

= (-9, -6, 2 )

 

 

= (-4, 5, -3 )

a

b

25.

 

= ( 3, 2, 5 )

 

 

= (-13, -1, 8 )

a

b

26.

 

= ( 12, 11,-5 )

 

 

= (-1, 2, 2 )

a

b

27.

 

= (-2, 6, 1 )

 

 

= (-5, 1, -7 )

a

b

28.

 

= (-1, -5, -15 )

 

 

= ( 15, -6, 1 )

a

b

29.

 

= ( 4, 9, -7

 

 

= ( 12, -4, 2 )

a

b

30.

 

= ( 16, 8, 7 )

 

 

= ( 6, -5, -8 )

a

b

2.2.10. Знайти роботу, яку виконує сила f , рухаючись

прямолінійно із точки А в точку В.

1.

f = ( 3, -2, 6 ),

А ( 2, -6, -1 ),

В ( -3,-5, 2 )

2.

f = ( -2, 7, -1),

А ( -4, 4, 3 ),

В ( 2, 5, -4 )

3.

f = ( 5, -6, -1),

А ( -3, 3, -2),

В ( 1, 5 , 3)

4.

f = ( -3, 7, -2),

А ( -8,-1, 5),

В (-1, 2 , 3)

5.

f = ( 8, -3, 7),

А ( -2, -5, 7),

В ( 3, 2, 5)

6.

f = ( -2, -3, 7 ),

А ( -15, 8, 4 ),

В ( -7, 3, 5 )

 

 

45

 

7.

f = ( 1,-5, -2 ),

А ( -10, -2, 2),

В ( 2, 1, -3)

8.

f = ( 4, 5, -1 ),

А ( 2, -1, -3),

В ( -1, 2, -8)

9.

f = ( 7, 5, -4),

А ( 7, 5, -1),

В ( 5, 8, -3)

10.

f = ( -2, 5, -3),

А ( -8, 1, 3),

В ( -1, 7, 5)

11.

f = ( 3, -4, 2 ),

А ( -5, 2, 8),

В ( 2,3, 5 )

12.

f = ( -3, 5, -2),

А ( -5, -4, 12),

В ( 3, -6, -11 )

13.

f = ( -4,-3, 7 ),

А ( 2, 8, -3),

В ( 8, -9, -5)

14.

f = ( 3, 2, 13),

А ( 7, -6, 6),

В ( 5, -9, 8)

15.

f = ( -7, -11, 5),

А ( -8, 4, -3),

В ( -5, 3, 2)

16.

f = ( -12, 13, -2)

А ( 8, -7, -2),

В (9, -5, -3 )

17.

f = ( -9, 5, -4),

А ( -3, 8, 2),

В ( -7, 5, 3)

18.

f = ( -6, 5, -4),

А ( 6, 3, -2),

В ( -7, -5, 3)

19.

f = ( -3, -5, 1),

А ( 5, 2, 3),

В ( 10, -5, 2)

20.

f = ( 11, -3, -4),

А ( -10, 2, 6),

В ( -13, 3, -8)

21.

f = ( -8, 7, 1),

А ( 8, -2, -3),

В ( 5, -3, 1)

22.

f = ( 15, -6, 1),

А ( 4, -3, -5),

В ( 3, -8, 2)

23.

f = ( 5, -4, -7),

А ( -4, -3, 10),

В ( 2, 4, 7)

24.

f = ( -4, -3, -1),

А ( 4, -3, -1),

В ( -5, 2, -4)

25.

f = ( 3, -2, 5),

А ( -10, -3, -1),

В ( 7, 5, -3)

26.

f = ( -5, 3, -7 ),

А ( -4, -9, 3),

В ( 3, -5, -4)

27.

f = ( 2, 7, -3 ),

А ( 6, -11, 4),

В ( -7, -3, 5)

28.

f = ( -5, -13, 3),

А ( 5, 7, -2),

В ( 8, 3, -5)

29.

f = ( 7, -4, 1),

А ( -5, -3, 2),

В ( 3, 2, -5)

30.

f = ( 12, -7, -2),

А ( -8, -1, 2),

В ( -5, 3, -9)

46

2.2.11. Знайти вектор m, коли відомо, що він колінеарний

до вектора а й задовольняє умові m a=с.

 

1.. a = ( 5,-1 ,7 ),

с = 150

2.

a = ( 2,-3 ,4 ),

с = -58

3.

a = ( 4, 2,-1 ),

с = 42

4.

a = ( 3, 2,-2 ),

с = -34

5.

a = ( -6, 1,-3 ),

с = 9

6.

a = ( 1, -4, 6),

с = -106

7.

a = ( 2, -2, 7 ),

с = 114

8.

a = ( -3, -4, 2 ),

с = -58

9.

a = ( 1, 7, -2),

с = 108

10. a = ( 2, -6, 1.),

с = -82

11. a = ( 1, -3, -5 ),

с = 7

12. a = ( -4, 2, -3),

с = -58

13. a = ( 7, -2, 4 ),

с = 138

14. a = ( -5, 1, -3),

с = -70

15. a = ( 2, -3, -2),

с = 34

 

 

 

Знайти координати вектора с, колінеарного до вектора а, причому вектор с утворює гострий кут з віссю Ох, а модуль вектора с відомий.

16.

a =(-2, 1,-2),

 

 

 

c

=6

 

 

 

 

18.

a =( 1,-2, 1),

 

 

 

c

= 2

21

 

 

20.

a =(-3, 1,-2),

 

 

 

c

=2 2

14

 

 

22.

a =(-4, 1, 1),

 

 

 

c

= 6

2

 

 

24.

a =(-1, 2, 1),

 

 

 

c

=2

6

 

 

26.

a =(-2, 1,-1),

 

 

 

c

=2

6

 

 

28.

a =(-2, 4, 1),

 

 

 

c

= 2

21

 

 

 

 

 

 

 

17.a =( 3,4,-1),

19.a =(1,-2,1),

21.a =(2,-1,-2),

23.a =(1,-3, 4),

25.a =(4,-1,-1)

27.a =(3,2,-2),

29.a =(2,-2, 3)

c == 2 26

c = 2 6

c =6

c = 2 26

c = 6 2

c =2 17

c =2 17

47

30.

a =(-1,-2, 4),

 

 

c

= 2 21

 

 

 

 

 

 

2.2.12 Обчислити площу паралелограму, побудованого на

векторах m та n.

1.

m = a 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = a + 2

 

 

 

 

 

 

 

 

 

 

a

 

 

=1/5

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

m = a + 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n =3a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

= 3

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

m = 4a

 

 

 

 

 

 

 

 

 

 

 

 

n = a + 2

 

 

 

 

 

 

 

 

 

a

 

 

= 2

b

b

 

 

 

 

 

 

 

 

 

 

 

4.

m = 3a +

 

 

 

 

 

 

 

 

 

 

 

 

 

n = a 2

 

 

 

 

 

 

 

 

 

a

 

 

= 2

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

m = 3a + 2

 

 

 

 

 

 

 

n = 2a

 

 

 

 

 

 

 

 

 

a

 

 

=4/7

b

b

 

 

 

 

 

 

 

 

6.

m = 2a + 3

 

 

 

 

 

 

 

n = a 2

 

 

 

 

 

 

 

 

 

a

 

= 3 3

b

b

 

 

 

 

 

 

 

7.

m = 3a + 2

 

 

 

 

 

 

 

n = a

 

 

 

 

 

 

 

 

 

 

 

 

a

 

=10

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.

m = 6a

 

 

 

 

 

 

 

 

 

 

n = a +

 

 

 

 

 

 

 

 

 

 

a

 

=11

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 5a + b

n = a + b

 

a

 

 

=

3

 

 

 

 

 

 

10.

m = a 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = 3a +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

=1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

11.

m = 3a

 

 

 

 

 

 

 

 

 

 

n = a + 2

 

 

 

 

 

 

a

 

=2

3

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.

m = a 2

 

 

 

 

 

 

 

 

 

n = 2a +

 

 

 

 

 

 

a

 

=

2

b

b

 

 

 

 

 

 

 

 

 

 

13.

m = 3a + 4

 

 

 

 

n =

 

a

 

a

 

=8

 

b

b

 

 

 

 

 

14.

m = 3a 2

 

 

 

 

n = a + 5

 

 

 

 

 

a

 

=1/2

b

b

 

 

 

 

 

 

 

 

 

15.

m = 5a

 

 

 

 

 

 

n = a +

 

 

 

 

 

a

 

=2

 

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16.

m = 3a 5

 

 

 

n = 2a + 3

 

 

 

a

 

=2/3

b

b

 

 

 

 

 

 

17.

m = 4a +

 

 

n = a

 

 

 

a

 

=4

 

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18.

m = 2a

 

 

n = a + 3

 

 

 

a

 

=3

 

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b =4 b =1/3 b =2/3 b =1 b =4 b =2/7 b =1/5 b =2/7 b =2

b =2 b =2/3 b =3 b =2/7

 

 

 

 

=

4

 

b

 

 

 

 

 

=

3

 

 

b

 

 

 

 

 

 

=

 

3

 

b

 

 

 

 

 

 

=

 

2

 

b

 

 

 

 

 

 

=

11

 

b

 

( a,ˆ b )=π/2. ( a,ˆ b )=2π/3 ( a,ˆ b )=π/4 ( a,ˆ b )=3π/4 ( a,ˆ b )=π/6 ( a,ˆ b )=π/3 ( a,ˆ b )=π/2 ( a,ˆ b )=5π/6 ( a,ˆ b )=2π/3

( a,ˆ b )=π/6 ( a,ˆ b )=π/3 ( a,ˆ b )=3π/4 ( a,ˆ b )=π/2 ( a,ˆ b )=5π/6 ( a,ˆ b )=π/6 ( a,ˆ b )=π/3 ( a,ˆ b )=π/4 ( a,ˆ b )=π/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

19.

m = 2a 3

 

 

 

 

 

 

 

n = 3a +

 

 

 

 

 

 

 

 

 

 

a

 

=1

b

b

 

 

 

 

 

 

 

20.

m = a + 3

 

 

 

 

 

 

 

 

 

 

n = 7a 2

 

 

 

a

 

=2

b

b

 

 

 

 

 

 

 

 

 

21.

m = 5a

 

 

 

 

 

 

 

 

 

 

n = 3a +

 

 

 

 

 

 

 

 

 

a

 

=3

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.

m = 3a +

 

 

 

 

 

 

 

 

 

 

n = a 3

 

 

 

 

 

 

 

 

a

 

=1/2

b

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23.

m = 6a

 

 

 

 

 

 

 

 

n = a + 2

 

 

 

 

 

 

a

 

= 2 3

b

b

 

 

 

 

 

 

 

 

24.

m = a + 4

 

 

 

 

 

 

n = 2a

 

 

 

 

 

a

 

=2

b

b

 

 

 

 

 

 

 

 

25.

m = 2a + 3

 

 

 

 

n = a 2

 

 

 

 

 

a

 

=2/3

b

 

b

 

 

 

 

 

 

 

26.

m = 2a 5

 

 

 

 

n = a 3

 

 

 

 

 

a

 

=29

b

 

b

 

 

 

 

 

 

 

 

 

 

27.

m = a + 3

 

 

 

 

 

n = a 2

 

 

 

 

 

a

 

=4

b

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

28.

m = 4a 3

 

 

 

 

n = 5a 4

 

 

 

a

 

=1

b

 

b

 

 

 

 

 

29.

m = 2a + 7

 

 

 

n = 2a

 

 

 

a

 

=4

b

 

 

b

 

 

 

 

 

 

 

 

30.

m = 7a +

 

 

 

 

n = a 3

 

 

 

a

 

=1,5

b

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=4

( a

b

)=π/6

b

 

 

=1/2

( a

 

)=π/2

 

b

b

 

 

=2

( a

 

)=5π/6

 

b

b

 

 

= 5 2

( a

 

)=π/6

 

b

b

 

 

=2/3

( a

 

)=2π/3

 

b

b

 

 

= 3

( a

 

)=π/3

 

b

b

 

 

= 6 3

( a

 

)=π/4

 

b

b

 

 

=2

( a

 

)=5π/6

 

b

b

 

 

= 3

( a

 

)=π/3

 

b

b

 

 

=31

( a

 

)=π/2

 

b

b

 

 

=1

( a

 

)=π/6

 

b

b

 

 

= 2

( a

 

)=3π/4

 

b

b

2.2.13 Дано вектори а та

векторного добутку.

1.a =(-1, 2, 1),

2.a =(5, 1, 1),

3.a =(-1, 2,-1),

4.a =( 10, 3, 12),

5.a =( 1, 1, 1),

6.a =(-3, 1, 1),

7.a =( 1,-1,-3),

b =(3,-4, 2), b =( 2, 4,-5), b =( 2, 4,-5), b =( 2, 1, 4) b =( 10,-1, 2), b =( 5,-2, 1), b =( 1, 1, 1),

в. Знайти координати

[(3 a + 2b )(2a + b )] [(5 a 2b )(2a b )] [(5 a 2b )(3a b )] [(2 a 7b )(5b a )] [( 2a 7b )(5b a )] [(4 a + 3b )(3a + 2b )] [( 2a + 3b )(a + 3b )]

8.a =(-3, -4, -3),

9.a =( 3,-2, 4),

10.a =( 5, 17, 9),

11.a =( 1, 2, 1),

12.a =(-1,-1, 3),

13.a =( 1, 2, 1),

14.a =( 17, 10, 7)

15.a =( 1, 9, 3),

16.a =(0, -2, -2),

17.a =(-2, 8, 4),

18.a =( 4,-11, 18),

19.a =( 2, -1, -2),

20.a =( 10,-6, -11),

21.a =( 1, 2, -3),

22.a =( 1, -1, -1),

23.a =(-1, 1, 1),

24.a =( 11, 16, 13),

25.a =( 2, 3, 5),

26.a =(-1, 4, 1),

27.a =( 1, -1, 0),

49

b =(0,-2,-2), b =(-3, 3, -8), b =(-1, -2, -1), b =( 1, 6, -1), b =(-2, -1, 3),

b =( 11, 12, 4), b =( 1, 1, 1),

b =( 1, 4, 1), b =( 1, 4, 7), b =(-1, 1, 1), b =( 1, 1, 1),

b =( 10,-6, -11), b =(-1, 1, 5),

b =( 0, 1, -2), b =(0,-6, -2), b =( 1, 6, 3), b =(1, 1, 1) b =( 3, 2, 5), b =(-1, 2, -1),

b =( 1 ,-3 , 1),

[(3a 7b )(1/ 2b a )]

[(5 a + 3b )(3a + 2b )] [(2 a +13b )(a + 5b )] [(5 a 2b )(2a 3b )] [(3a 4b )(b 3a )] [(13 a 2b )(b 6a )] [( a 11b )(17b a )] [(4 a 7b )(3b a )]

[(7 a + 3b )(1/ 2a + b )]

[( a 7b )(4b a )] [(a 13b )(11b a )] [(13a 2b )(6a b )] [(5 a + 8b )(a + 2b )] [(3a 8b )(a 2b )] [(5 a b )(1/ 2b a )] [(8 a b )(b 3a )]

[( a 17b )(22b 2a )]

[(6 a 5b )(2a 3b )] [(2 a 5b )(a 3b )] [(8a 3b )(b 2a )]

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

28.

a =( 3, 1, 10),

 

 

=( 1, 0, 1),

[(2 a 15

 

 

 

)(10

 

 

a )]

 

b

b

b

29.

a =( 3, 2, -2),

 

 

=( 6, 5, -4),

[(12 a 5

 

 

)(2a

 

)]

 

b

b

b

30.

a =(-1, -1, 9),

 

 

=( 0, -1, 2),

[(3 a 11

 

)(4

 

a )]

 

b

b

b

2.2.14 Знайти момент сили Р відносно точки С, якщо сила

прикладена до точки А.

1.

p =( 0, -4, -8),

А( -1, 2, 4),

С (3, 0, -1).

2.

p =(-5 -7, -4),

А( 3, 10, -1),

С (-6, 0, -3).

3.

p =( 4, -1, -10),

А( -7, 3, 2),

С (-4, 1,-8 ).

4.

p =(-2, 2, 3),

А( -2,-1,-1),

С (-6,-1,-7).

5.

p =( 4, -5, 0),

А( -3, 3, 5),

С (-3, 7, 2).

6.

p =( 4, 0, 8),

А( -1, -4, 2),

С (1, 1, -2).

7.

p =( 7, 4, 5),

А( -3, -3, -2),

С (7, -1, 7).

8.

p =(-1,-10, 4),

А(-3, 6, -2),

С (-5, -4, 1).

9.

p =(-2, -3, 2),

А( -7, 11, 3),

С (-7, 17, 7).

10.

p =( 5, 0, -4),

А( 5, 2, 7),

С (1, 5, 7).

11.

p =(-8, 0,-4),

А( -1, -4, 2),

С (-6, 0, 0).

12.

p =(-4,-5,-7),

А(11, -3, 12),

С (9, -12, 2).

13.

p =(-10, 4,-1),

А(12, 6, -7),

С (2, 9, -9).

14.

p =( 2, 3, -2),

А( 6, -8, -5),

С (6,-14,-9).

15.

p =( 0, 4,-5),

А( 7, -5, 2),

С (4, -5, 6).

16.

p =( 0, 4, 8),

А(-3,-6,-2),

С (-7, -4, 3).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]