
- •Содержание
- •6. Элементарные двоичные переключательные функции
- •7. Основные законы булевой алгебры и преобразование
- •Приложение 2. Варианты контрольных заданий по дисциплине
- •Предисловие
- •Дискретная математика
- •1. Множества и алгебраические системы. Булевы алгебры
- •1.1. Основные понятия теории множеств
- •1.2. Основные операции над множествами
- •1.3. Декартово произведение множеств
- •1.4. Соответствия и функции
- •1.5. Отношения
- •1.6. Использование множеств в языке Паскаль
- •2. Элементы общей алгебры
- •2.1. Операции на множествах
- •2.2. Группа подстановок Галуа
- •2.3. Алгебра множеств (алгебра Кантора)
- •2.4. Алгебраические системы. Решетки
- •2.5. Задание множеств конституентами
- •2.6. Решение уравнений в алгебре множеств.
- •3. Элементы комбинаторики
- •3.1. Комбинаторные вычисления
- •3.2. Основные понятия комбинаторики
- •3.3. Размещения
- •3.4. Перестановки
- •3.5. Сочетания
- •3.6. Треугольник Паскаля.
- •3.7. Бином Ньютона
- •3.8. Решение комбинаторных уравнений
- •4. Основные понятия теории графов
- •4.1. Способы задания графов
- •4.2. Характеристики графов
- •4.3. Понятие о задачах на графах
- •4.4. Задача о Ханойской башне
- •5. Переключательные функции и способы их задания
- •5.1. Понятие о переключательных функциях
- •5.2. Двоичные переключательные функции и способы их задания
- •5.3. Основные бинарные логические операции
- •5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- •5.5. Использование логических операций в теории графов
- •6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- •6.1. Элементарные переключательные функции одной переменной
- •6.2. Элементарные переключательные (логические) функции двух переменных
- •6.3. Функциональная полнота систем переключательных функций
- •6.4. Базисы представления переключательных функций
- •6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- •7. Основные законы булевой алгебры и преобразование переключательных функций
- •7.1. Основные законы булевой алгебры переключательных функций
- •7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- •7.3. Преобразование форм представления переключательных функций
- •8. Минимизация переключательных функций
- •8.1. Цель минимизации переключательных функций
- •8.2. Основные понятия и определения, используемые при минимизации
- •8.3. Аналитические методы минимизации переключательных функций
- •8.4. Минимизация переключательных функций по картам Карно
- •8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- •Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- •8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- •8.7. Минимизация систем переключательных функций
- •8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- •9. Понятие об автомате и его математическом описании
- •9.1. Основные определения теории конечных автоматов
- •9.2. Описание конечных детерминированных автоматов
- •9.3. Понятие о технической интерпретации конечных автоматов
- •9.4. Синтез комбинационных автоматов в заданном базисе
- •9.5. Булева производная
- •9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- •9.7. Синтез автомата – распознавателя последовательности
- •10. Элементы теории кодирования
- •10.1. Понятие о кодировании
- •10.2. Системы счисления, как основа различных кодов
- •10.3. Понятие о помехоустойчивом кодировании
- •10.4. Кодирование по Хэммингу
- •10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- •10.6. Понятие о криптографической защите информации
- •10.7. Понятие о сжатии информации
1.5. Отношения
Подмножество RMn называется n местным отношением на множестве М. Говорят, что а1,...,аn находятся в отношении n, если (а1,...аn)R. Одноместное отношение (свойство, признак) – это просто подмножество М. Наиболее часто встречающиеся и хорошо изученные – бинарные отношения, для них RM2. Если а,b находятся в отношении R, то это часто записывают в виде аRb.
Примеры бинарных отношений на множестве людей «быть сыном», «служить в одном полку», «любить», «дружить».
Примером трехместного (тернарного) отношения является множество троек нападающих в хоккейной команде или отношение «ставить оценку», определяемое следующим образом: «преподаватель х ставит студенту y оценку z».
Можно определить обратное отношение R-1. Например, для отношения обратным является отношение .
Рассмотрим свойства отношений.
Отношение R называется рефлексивным, если для любого аМ имеет место аRа. Отношение антирефлексивно, если ни для какого аМ не выполняется аRа.
Отношение рефлексивно, а отношение «быть сыном» антирефлексивно.
Таким образом, рефлексивность – свойство выполнимости отношения для каждого элемента подмножества R относительно самого себя.
Отношение R симметрично, если из aRb следует bRa (это может быть записано с использованием стрелки следования aRbbRa). В противном случае отношение R несимметрично, то есть, если aRb истинно, то bRa ложно. Отношение R антисимметрично, если из aiRaj и ajRai следует, что ai=aj.
Отношение дружбы симметрично. Отношение любви, как правило, несимметрично. Отношение антисимметрично, действительно, если аb и bа, то а=b. Отношение R симметрично тогда и только тогда, когда R=R-1.
Отношение R транзитивно, если для любых а,b,с из аRb и bRс следует аRс. Это можно записать с использованием знака конъюнкции (союз «И») и символа «следует»:
(аRb)&(bRс)аRс
Например,
отношение «являться начальником»
транзитивно. Отношение дружбы
нетранзитивно. Для любого отношения R
отношение
,
называемое транзитивным замыканиемR,
определяется следующим образом: а
b,
если существует цепочка из n
элементов а=а1,а2,...,аn-1,аn=b,
в которой между соседними элементами
выполнено R:а1Ra2,a2Ra3,...,an-1Rb.
Транзитивным замыканием отношения «быть сыном» является отношение «быть прямым потомком», являющееся объединением отношений «быть сыном», «быть внуком», «быть правнуком» и т.д.
Отношение называется отношением эквивалентности, если оно рефлексивно, симметрично, транзитивно.
Таково отношение равенства.
Отношение нестрогого порядка рефлексивно, антисимметрично и транзитивно.
Отношение строгого порядка антирефлексивно, антисимметрично и транзитивно.
Отношения и для чисел – отношения нестрогого порядка, отношения <, > – отношения строгого порядка.
Пример лексико-графического упорядочения слов в словарях: леслето, где – символ упорядочения.
Отношение доминирования (например, на множестве спортсменов или спортивных команд) обозначается >>. Это отношение антирефлексивно, несимметрично и нетранзитивно.
Отношения (relations) являются основным объектом современных систем управления реляционными базами данных (СУБД), в которых отношения задаются, как правило, на произведении различных множеств. В теории СУБД, в отличие от «академической» записи отношений, принятой в математике используется содержательные записи, например:
<Иван, Мария, цветы, восьмое марта> – четырехместное отношение «Дарить», <Профессор Иванов, студент Петров, отлично> – тернарное отношение «Ставить оценку».
Чаще всего отношения в СУБД задаются таблицами, столбцы которых называют также атрибутами, полями, а строки – кортежами, записями.
Реляционная база данных, то есть база данных, основанных на отношениях, представляет собой совокупность таблиц. Таблица состоит из строк и столбцов. Столбец, то есть поле, задается так называемыми реквизитами: именем, типом (числовой, признаковый и т.д.), длиной, точностью для числовых данных.
Запись, таким образом – это совокупность связанных полей. Таблица – совокупность записей одной структуры. Одно из полей является так называемым первичным ключём, значения которого однозначно указывает на соответствующие ему записи (отношения).