
- •Электрический заряд и его свойства. Закон сохранения электрического заряда. Электрический заряд и его свойства.
- •2) Электрический заряд дискретен;
- •Закон сохранения электрического заряда.
- •Закон Кулона
- •Электростатическое поле
- •Напряженность поля
- •Графическое изображение электростатических полей
- •Принцип суперпозиции
- •Электрический диполь.
- •Дипольный момент
- •Поведение диполя во внешнем электрическом поле.
- •Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Поток вектора напряженности.
- •Теорема Остроградского-Гаусса для электростатического поля в вакууме
- •Теорема о циркуляции вектора напряженности электростатического поля.
- •Вещество в электрическом поле.
- •Типы диэлектриков
- •Поляризация диэлектриков.
- •Поляризованность, диэлектрическая восприимчивость вещества, относительная диэлектрическая проницаемость.
- •Вектор электрического смещения
- •Поток вектора электрического смещения
- •Теорема Гаусса для электростатического поля в диэлектрике
- •Сегнетоэлектрики
- •Точка Кюри
- •Электрический гистерезис
- •Пьезоэлектрический эффект.
- •Проводники в электростатическом поле.
- •Типы проводников
- •Напряженность поля внутри проводника и вблизи его поверхности.
- •Электростатическая индукция
- •Энергия заряженного уединенного проводника и заряженного конденсатора
- •Энергия электростатического поля
- •Объемная плотность энергии
- •Постоянный электрический ток.
- •Условия существования тока в проводнике
- •Характеристики тока
- •Сторонние силы
- •Электродвижущая сила
- •Напряжение
- •Разность потенциалов
- •Сопротивление и его зависимость от температуры
- •Сверхпроводимость
- •16. Работа и мощность тока. Закон Джоуля – Ленца в интегральной и дифференциальной форме
- •18. Правила Кирхгофа для разветвленных цепей. Узел. Правила для токов и э.Д.С. При применении правил Кирхгофа.
- •19. Опыт Эрстеда. Магнитное поле и его характеристики. Вектор индукции магнитного поля и его направление
- •20.Закон Био-Савара-Лапласа и его применение к расчету магнитных полей. Принцип суперпозиции
- •21. Закон Ампера. Взаимодействие параллельных токов
- •22. Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле. Ускорители заряженных частиц.
- •23. Эффект Холла.Холловская разность потенциалов.Постоянная Холла
- •24. Закон полного тока для магнитного поля в вакууме. Применение теоремы о циркуляции вектора для расчета магнитных полей: магнитное поле прямого тока и соленоида
- •25. Поток магнитной индукции. Теорема Гаусса для магнитного поля. Потокосцепление.
- •26. Работа по перемещению проводника и контура с током в магнитном поле.
- •27 .Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея-Максвелла. Правило Ленца. Природа электромагнитной индукции в движущихся и неподвижных проводниках
- •28. Принцип действия генератора переменного тока. Вращение рамки в магнитном поле. Обратимость процесса превращения механической энергии в электрическую.
- •29. Индуктивность контура. Самоиндукция. Токи при замыкании и размыкании цепи. Время релаксации.
- •30. Взаимная индукция. Трансформаторы: устройство и принцип работы. Типы трансформаторов.
- •31. Энергия магнитного поля, связанная с контуром. Объемная плотность энергии
- •32. Магнитные моменты электронов и атомов
- •33 Намагниченность. Магнитное поле в веществе Связь между намагниченностью и напряженностью магнитного поля. Магнитная восприимчивость. Магнитная проницаемость вещества.
- •34 Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора ).
- •35 Пара- и диа- магнетики
- •36 Ферромагнетики и их свойства
- •37. Вихревое электрическое поле
- •38. Ток смещения
- •39. Уравнения Максвелла в интегральной форме.
- •1. ; 2.;
- •3. ; 4..
- •40. Уравнения Максвелла в дифференциальной форме
- •41. Уравнение гармонических колебаний
- •Упругие волны
- •42. Затухающие колебания
- •15.2. Вынужденные колебания
- •43 .Колебательный контур. Уравнение колебательного контура
- •44. Свободные затухающие колебания
- •45. Вынужденные электрические колебания
- •46. Электрический резонанс. Резонансные кривые
23. Эффект Холла.Холловская разность потенциалов.Постоянная Холла
Эффектом Холла называется возникновение поперечного электрического поля в проводнике или полупроводнике с током при помещении его в магнитное поле. Это явление обусловлено влиянием силы Лоренца на движение носителей тока.
, (13)
где
а
– ширина пластинки,
– поперечная (холловская) разность
потенциалов.
Учитывая, что сила тока
холловской разности потенциалов:
.
Холловская
разность
потенциалов
пропорциональна магнитной индукции
,
силе токаI
и обратно пропорциональна толщине
пластинки d.
Постоянная Холла зависит от вещества
.
По измеренному значению постоянной Холла можно: а) определить концентрацию носителей тока в проводнике; б) судить о природе проводимости полупроводников
24. Закон полного тока для магнитного поля в вакууме. Применение теоремы о циркуляции вектора для расчета магнитных полей: магнитное поле прямого тока и соленоида
Циркуляция
вектора
магнитного поля в вакууме.Циркуляцией
магнитной индукции
вдоль замкнутого контураL,
проведенного в магнитном поле, называется
линейный интеграл
,
Закон
полного тока для магнитного поля в
вакууме (теорема о циркуляции вектора
):
циркуляция вектора
по произвольному замкнутому контуру
равна произведению магнитной постоянной
на алгебраическую
сумму токов, охватываемых этим контуром:
.
Сравнение
теорем о циркуляции векторов
и
:
;
.
Между
ними существует принципиальное различие.
Циркуляция вектора
равна нулю,
т.е. электростатическое
поле является
потенциальным.
Циркуляция вектора
магнитного поля не равна нулю. Такое
поле называетсявихревым.
Магнитное
поле прямого тока.
Применим теорему о циркуляции вектора
для расчета магнитного поля прямого
тока I,
перпендикулярного
плоскости чертежа и направленного к
нам
Магнитное поле соленоида. Соленоид – свернутый в спираль изолированный проводник, по которому течет электрический ток. Опыт показывает, что магнитное поле сосредоточенное внутри бесконечно длинного соленоида - однородно, а полем вне соленоида можно пренебречь.
25. Поток магнитной индукции. Теорема Гаусса для магнитного поля. Потокосцепление.
Элементарным потоком вектора магнитной индукции (магнитным потоком) сквозь малую площадку dS называется скалярная физическая величина, равная
,
Знак
потока магнитной индукции. Поток
вектора
может быть как положительным, так и
отрицательным в зависимости от знака
.
Знак определяется выбором положительного
направления нормали
,
которое связано с током правилом правого
винта.
Поток
вектора
связывают с контуром, по которому течет
ток. Таким образом,магнитный
поток, создаваемый контуром через
поверхность, ограниченную им самим,
всегда положителен.
Теорема
Гаусса для поля
:
поток вектора магнитной индукции сквозь
произвольную замкнутую поверхность
равен нулю.
. (9)
Этот результат является математическим выражением того, что в природе не существует магнитных зарядов – источников магнитного поля, на которых начинались бы или заканчивались бы линии магнитной индукции, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Такое поле называют соленоидальным или вихревым.
Потокосцепление- полный магнитный поток, пронизывающий электрический контур. Напр., потокосцепление многовитковой катушки индуктивности равно сумме потоков через все ее витки. Единица измерения - Вб.