
- •Электрический заряд и его свойства. Закон сохранения электрического заряда. Электрический заряд и его свойства.
- •2) Электрический заряд дискретен;
- •Закон сохранения электрического заряда.
- •Закон Кулона
- •Электростатическое поле
- •Напряженность поля
- •Графическое изображение электростатических полей
- •Принцип суперпозиции
- •Электрический диполь.
- •Дипольный момент
- •Поведение диполя во внешнем электрическом поле.
- •Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Поток вектора напряженности.
- •Теорема Остроградского-Гаусса для электростатического поля в вакууме
- •Теорема о циркуляции вектора напряженности электростатического поля.
- •Вещество в электрическом поле.
- •Типы диэлектриков
- •Поляризация диэлектриков.
- •Поляризованность, диэлектрическая восприимчивость вещества, относительная диэлектрическая проницаемость.
- •Вектор электрического смещения
- •Поток вектора электрического смещения
- •Теорема Гаусса для электростатического поля в диэлектрике
- •Сегнетоэлектрики
- •Точка Кюри
- •Электрический гистерезис
- •Пьезоэлектрический эффект.
- •Проводники в электростатическом поле.
- •Типы проводников
- •Напряженность поля внутри проводника и вблизи его поверхности.
- •Электростатическая индукция
- •Энергия заряженного уединенного проводника и заряженного конденсатора
- •Энергия электростатического поля
- •Объемная плотность энергии
- •Постоянный электрический ток.
- •Условия существования тока в проводнике
- •Характеристики тока
- •Сторонние силы
- •Электродвижущая сила
- •Напряжение
- •Разность потенциалов
- •Сопротивление и его зависимость от температуры
- •Сверхпроводимость
- •16. Работа и мощность тока. Закон Джоуля – Ленца в интегральной и дифференциальной форме
- •18. Правила Кирхгофа для разветвленных цепей. Узел. Правила для токов и э.Д.С. При применении правил Кирхгофа.
- •19. Опыт Эрстеда. Магнитное поле и его характеристики. Вектор индукции магнитного поля и его направление
- •20.Закон Био-Савара-Лапласа и его применение к расчету магнитных полей. Принцип суперпозиции
- •21. Закон Ампера. Взаимодействие параллельных токов
- •22. Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле. Ускорители заряженных частиц.
- •23. Эффект Холла.Холловская разность потенциалов.Постоянная Холла
- •24. Закон полного тока для магнитного поля в вакууме. Применение теоремы о циркуляции вектора для расчета магнитных полей: магнитное поле прямого тока и соленоида
- •25. Поток магнитной индукции. Теорема Гаусса для магнитного поля. Потокосцепление.
- •26. Работа по перемещению проводника и контура с током в магнитном поле.
- •27 .Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея-Максвелла. Правило Ленца. Природа электромагнитной индукции в движущихся и неподвижных проводниках
- •28. Принцип действия генератора переменного тока. Вращение рамки в магнитном поле. Обратимость процесса превращения механической энергии в электрическую.
- •29. Индуктивность контура. Самоиндукция. Токи при замыкании и размыкании цепи. Время релаксации.
- •30. Взаимная индукция. Трансформаторы: устройство и принцип работы. Типы трансформаторов.
- •31. Энергия магнитного поля, связанная с контуром. Объемная плотность энергии
- •32. Магнитные моменты электронов и атомов
- •33 Намагниченность. Магнитное поле в веществе Связь между намагниченностью и напряженностью магнитного поля. Магнитная восприимчивость. Магнитная проницаемость вещества.
- •34 Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора ).
- •35 Пара- и диа- магнетики
- •36 Ферромагнетики и их свойства
- •37. Вихревое электрическое поле
- •38. Ток смещения
- •39. Уравнения Максвелла в интегральной форме.
- •1. ; 2.;
- •3. ; 4..
- •40. Уравнения Максвелла в дифференциальной форме
- •41. Уравнение гармонических колебаний
- •Упругие волны
- •42. Затухающие колебания
- •15.2. Вынужденные колебания
- •43 .Колебательный контур. Уравнение колебательного контура
- •44. Свободные затухающие колебания
- •45. Вынужденные электрические колебания
- •46. Электрический резонанс. Резонансные кривые
Электрический заряд и его свойства. Закон сохранения электрического заряда. Электрический заряд и его свойства.
Электрический заряд q – это физическая величина, которая характеризует свойство тел или частиц вступать в электромагнитные взаимодействия и определяет значения сил и энергий при таких взаимодействиях. Ему присущи следующие фундаментальные свойства:
1) электрический заряд существует в двух видах: отрицательные и положительные заряды;
2) Электрический заряд дискретен;
3) алгебраическая сумма электрических зарядов замкнутой системы остается постоянной (закон сохранения электрического заряда);
или
,
4) электрический заряд - величина релятивистки инвариантная, т.е. не зависит от системы отсчета, а значит, не зависит от того, движется заряд или покоится.
Закон сохранения электрического заряда.
Закон сохранения электрического заряда утверждает: электрические заряды не возникают и не исчезают, они могут быть лишь переданы от одного тела другому или перемещены внутри данного тела. Это фундаментальный закон природы, экспериментально подтвержденный в 1843 году английским физиком М. Фарадеем:
или
,
т.е. алгебраическая сумма зарядов замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается постоянной.
Взаимодействие зарядов. Закон Кулона.
Взаимодействие зарядов.
Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как материальной точки является физической абстракцией.
Закон Кулона
Закон
Кулона
утверждает: сила взаимодействия
между двумя неподвижными точечными
зарядами, находящимися в вакууме,
пропорциональна зарядам
и
и обратно пропорциональна квадрату
расстоянияr
между ними. Этот закон можно записать
в виде:
, (1)
где
k
– коэффициент пропорциональности,
зависящий от выбора системы единиц. В
СИ
,
где величина
– электрическая постоянная. Она относится
к числу фундаментальных физических
постоянных:
Ф/м или
.
(Фарад (Ф)– единица электроемкости.)
Тогда численное значение коэффициента
.
Кулон экспериментально установил, что силы, действующие на заряды, являются центральными, т.е. они направлены вдоль прямой, соединяющей заряды (рис. 1.1).
Рис. 1.1
Для
одноименных зарядов (и
или
и
)
произведение
,
поэтому в формуле (1) силаF
> 0 соответствует случаю взаимного
отталкивания одноименных зарядов, а
сила F
< 0 – случаю взаимного притяжения
разноименных зарядов.
Закон
Кулона (1)
можно записать в векторной форме. Cила
,
действующая на заряд
со стороны заряда
равна:
,
где
- радиус вектор, соединяющий заряд
с зарядом
,
.
Cила
,
действующая на заряд
со стороны заряда
равна:
,
где
- радиус вектор, соединяющий заряд
с
зарядом
,
.
Таким
образом, кулоновские силы
и
подчиняются третьему закону Ньютона:
.
Относительная
диэлектрическая проницаемость ()
среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными зарядами
и
,
находящимися друг от друга на расстоянииr,
меньше, чем в вакууме. Тогда, с учетом
этого формула (1) примет вид:
. (2)
Такая форма записи закона Кулона общепринята в электротехнике и называется рационализированной. В векторной форме закон Кулона запишется:
. (3)
Электростатическое поле. Напряженность поля. Графическое изображение электростатических полей. Принцип суперпозиции.