Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
145
Добавлен:
08.06.2015
Размер:
1.4 Mб
Скачать

Типы моделей

Существует много способов описания систем с помощью моделей. Конкретный выбор зависит от предварительно имеющейся информации, возможностей собирать данные о процессе по мере его развития и, что важнее всего, от цели моделирования. В отличие от науки, где целью моделирования является глубокое проникновение в суть системы, модель в инженерном смысле считается адекватной, если соответствующие процессы управления работают предсказуемым образом, т. е. имеется устойчивый выход с малыми отклонениями от заданного значения, воспроизводимость отклика на входной сигнал и т. д

  • Непрерывное во времени (аналоговое) описание. Система описывается линейными или нелинейными дифференциальными уравнениями баланса массы, энергии, сил или моментов. Во многих случаях нелинейные уравнения можно линеаризовать и тем самым упростить работу с ними.

  • Дискретное во времени описание (sampled time description). Физические свойства описываются линейными или нелинейными разностными уравнениями. Такой подход означает, что информация о системе доступна только в определенные, дискретные, моменты времени. Этот тип описания в действительности почти неизбежен при цифровом управлении потому, что компьютеры, базирующиеся на наиболее распространенной архитектуре фон Неймана (von Neumann), выполняют инструкции последовательно. Определение интервала дискретизации, т. е. периодичности обновления или пересчета данных, является наиболее важным элементом такого моделирования.

  • Модели систем, основанных на дискретных событиях (discrete events model) или на последовательности событий (sequencing system). Пример управления последовательностью событий был приведен в разделе 2.2.1. При таком описании входные и выходные величины системы дискретны во времени и обычно являются бинарными сигналами типа "включено/выключено". Многие системы управления последовательностью можно описать как системы очередей и моделировать так называемыми марковскими цепями или марковскими процессами.

  • Модели систем с неопределенностями (system with uncertainties). Как на сами управляемые системы, так и на измерения часто влияют нежелательные шумы и возмущения. В одних случаях возмущения и неполные знания о техническом процессе можно интерпретировать статистически. В других — факторы неопределенности вместо количественных характеристик можно описывать лингвистическими и логическими выражениями. Пример такого описания — правила экспертных систем "если-то-иначе". Еще одно средство описания неопределенностей — так называемая нечеткая (fuzzy) алгебра.

Масштаб времени динамических моделей

Масштаб времени — одна из наиболее важных характеристик динамического процесса. Большинство технических систем и производств включают в себя несколько процессов, существенно отличающихся временем реакции. Поэтому при описании процесса важно выбрать масштаб времени, который соответствует поставленной цели.

Проиллюстрируем это на примере промышленного производства. Задачи управления можно разбить на несколько уровней. События на уровне станков происходят за доли секунды, как, например, при управлении манипулятором робота или инструментом станка. На следующем, более высоком уровне управления, на уровне участка, цель — синхронизация различных механизмов, например решение, когда робот должен переместить деталь между двумя станками. Масштаб времени здесь уже имеет порядок от секунд до минут. На уровне участка предполагается, что задача управления конкретным станком уже решена на более низком уровне. Масштаб времени на уровне участка определяется задачами снабжения станка заготовками, определения, свободен ли робот, чтобы захватить новую деталь, и т. д. На еще более высоком уровне планируется производство в целом, т. е. что производить и с какими конкретными характеристиками. Решение таких проблем может занимать дни или недели, и по сравнению с этим динамика одного стан­ка рассматривается как одномоментная.