Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
110
Добавлен:
08.06.2015
Размер:
452.1 Кб
Скачать

Лекция 6

Тема 3.1 Аналоговые (непрерывные) и дискретные регуляторы. Дискретная модель ПИД-регулятора. Позиционный алгоритм. Определение частоты выборки в системах управления. Предотвращение интегрального насыщения.

Регуляторы можно строить на основе как аналоговой, так и цифровой техники. Со­ответственно, для анализа и проектирования аналогового и цифрового регулятора требуются разные математические методы. Хотя цифровая технология позволяет хорошо моделировать работу аналоговой системы управления, т. е. реализовать аналоговые понятия цифровыми средствами, ее возможности гораздо шире. Например, можно построить нелинейные и самонастраивающиеся регуляторы, которые нельзя создать на основе только аналоговых средств. Главная проблема цифрового управления — найти соответствующую структуру регулятора и его параметры. После определения этих параметров реализация алгоритмов управления обычно представляет собой простую задачу. Помимо этого, каждый регулятор должен включать средства защиты, предотвращающие опасное развитие процесса под действием регулятора в нештатных ситуациях.

Многие производственные процессы характеризуются несколькими входными и выходными параметрами. В большинстве случаев внутренние связи и взаимодействие соответствующих сигналов не имеют принципиального значения, и процессом можно управлять с помощью набора простых регуляторов, при этом каждый контур управления обрабатывает одну пару вход/выход. Такой подход используется в системах прямого цифрового управления.

Аналоговые регуляторы

Передаточная функция G(s) линейной динамической системы была определена в разделе 3.3.4. Такое описание системы удобно для проектирования некоторых ти­пов регуляторов, например ПИД-регулятора, если процесс имеет только один вход и один выход и, соответственно, описывается одной простой передаточной функцией. Ниже мы будем рассматривать только такие системы. В других случаях систему удобнее описывать в пространстве состояний (раздел 3.3.2) и строить регулятор на основе этой модели. Эта процедура обсуждается в разделе 6.10.

И физический процесс, и регулятор представляют собой динамические системы, которые можно описать дифференциальными уравнениями или передаточными функциями. Математически сам процесс и его регулятор описываются одинаково. Однако, с практической точки зрения, между ними есть существенная разница. Передаточная функция G(s) физического процесса или его уравнения состояния считаются неизменными, т. е. коэффициенты уравнений (3.1) и (3.3) не могут изменяться, так как они определяются физической природой процесса. С другой стороны, передаточная функция или уравнения состояния для регулятора включают коэффициенты, которые можно выбрать в известной степени, произвольно. Важной задачей проектирования регулятора является именно определение этих параметров.

Необходимо также иметь в виду, что в общем случае определение передаточной функции G(s) технического процесса представляет собой сложную задачу. К счастью, многие стратегии управления можно применять и без детальной и точной модели процесса.