Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / 0841558_16EA1_federico_milano_power_system_modelling_and_scripting

.pdf
Скачиваний:
86
Добавлен:
08.06.2015
Размер:
6.72 Mб
Скачать

518

 

 

 

 

C Control Diagrams

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C.4 Transient response of windup and anti-windup limiters

straightforward.1 The issue consists in that the output w of lead-lags or PI controllers is an explicit function of the input y, whose first time derivative, in some cases, cannot be determined. Figure C.5 shows some common solutions for implementing an anti-windup limiter of a PI controller. Figure C.5.e is the most precise model, which is also the most complex.

Script C.1 Implementation of Windup and Anti-Windup

Limiters

The object of the scripts below is to define a vector, say self.z, whose elements are 1 if the associated state variable is not saturated and belongs to an on-line element; and 0 otherwise. Thus, self.z is a copy of the status array self.u if no state variable is saturated.

The following code implements the windup limiter. The input arguments are the DAE system (dae) and the names of the state variable (x), of the maximum and minimum value (xmax and xmin, respectively) and of the saturation status (z).

1 Di culties arises whenever the transfer function has the same number of poles and zeros.

C.2 Hard Limits

 

 

 

 

 

 

 

 

519

 

Kp

 

 

 

 

Kp

 

wmax

 

 

 

 

 

 

 

 

 

y

 

 

+

w

y

 

+

w

 

 

 

 

 

 

 

 

Ki

x

+

 

 

x

+

 

 

 

 

 

 

 

Ki

 

 

 

 

s

 

 

 

 

s

wmin

 

 

 

(a)

 

 

 

 

(b)

 

 

 

Kp

 

 

wmax

 

Kp

 

 

wmax

 

 

 

 

 

 

 

 

y

 

+

 

w

y

 

+

 

w

 

 

 

 

 

 

xmax

 

 

 

 

 

 

 

 

 

Ki

x

+

 

 

+

x

+

 

 

 

 

 

 

 

Ki

 

 

 

s

 

wmin

 

 

 

s

 

wmin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

xmin

 

 

 

 

 

 

 

 

 

(c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ks

 

 

 

 

 

 

 

 

 

(d)

 

 

 

Kp

 

wmax

y

+

w

 

Ki

+

 

 

 

s

 

wmin

 

 

0

 

 

 

 

>

 

&

(e)

 

 

Fig. C.5 PI controller: (a) basic PI scheme without hard limits, (b) windup limiter,

(c) limited integrator, (d) tracking anti-windup, and (e) integrator clamping

def windup(self, dae, x, xmax, xmin, z):

sumz = sum(self. dict [z]) self. dict [z] = matrix(self.u) zmax = matrix(self.u)

zmin = matrix(self.u)

for idx, item in enumerate(self. dict [x]): if dae.x[item] >= self. dict [xmax][idx]:

dae.f[item] = 0

dae.x[item] = self. dict [xmax][idx]

520

C Control Diagrams

self. dict [z][idx] = 0

 

zmax[idx] = 0

 

elif dae.x[item] <= self. dict

[xmin][idx]:

dae.f[item] = 0

 

dae.x[item] = self. dict [xmin][idx] self. dict [z][idx] = 0

zmin[idx] = 0

if sumz != sum(zmax) or sumz != sum(zmin): dae.factorize = True

A similar method can be used for limiting algebraic variables. The last line of the previous code is needed to impose a re-factorization of the system Jacobian matrix. If a state variable reaches a limit, its value is constant. Thus, if a variable has a position k in the system Jacobian matrix AC , then one has to set to zero the entire kth row and kth column. Only the diagonal element (k, k) of the matrix AC has to be non-zero to avoid singularity. Since AC = [[f x, f y ]; [gx, gy ]], the saturation of the state variable with index k corresponds to set to zero the k-th row of f x and f y and the k-th column of f x and gx and to assign a non-zero value to the element (k, k) of f x. The following code is an e cient way to do that (it is assumed that the function is a method of the class system.DAE).

def set Ac(self, idx):

H = spmatrix(1.0, idx, idx, (self.ny, self.ny))

I = spdiag([1.0]*self.ny) - H

self.Gy = I * (self.Gy * I) + H self.Fy = self.Fy * I

self.Gx = I * self.Gx

The following code does the same as the previous one, but it is less e cient (about 5 times slower):

def set Ac(self, idx):

self.Gy[idx, :] = 0 self.Gy[:, idx] = 0

self.Gy += spmatrix(1.0, idx, idx, (self.ny, self.ny), ’d’) self.Fy[:, idx] = 0.0

self.Gx[idx, :] = 0.0

# needed to maintain the minimum sparsity level self.Gy = sparse(self.Gy)

self.Fy = sparse(self.Fy) self.Gx = sparse(self.Gx)

The di erence in the e ciency of the previous functions is typical of scripting languages. In fact, matrix initialization, indexing and operations are obtained through interfaces to external libraries. Since the bottleneck are the calls to the external library, the less the number of calls, the faster the resulting code.

The following method implements an anti-windup limiter. The main difference with the previous method is the check on the sign of the di erential equation, i.e., the state variable time derivative.

C.2 Hard Limits

521

def anti windup(self, dae, x, xmax, xmin, z):

sumz = sum(self. dict [z]) self. dict [z] = matrix(self.u) zmax = matrix(self.u)

zmin = matrix(self.u)

for idx, item in enumerate(self. dict [x]):

if dae.x[item] >= self. dict [xmax][idx] and \ dae.f[item] > 0:

dae.f[item] = 0

self. dict [z][idx] = 0 zmax[idx] = 0

dae.x[item] = self. dict [xmax][idx]

elif dae.x[item] <= self. dict [xmin][idx] and \ dae.f[item] < 0:

dae.f[item] = 0

self. dict [z][idx] = 0 zmin[idx] = 0

dae.x[item] = self. dict [xmin][idx] if sumz != sum(zmax) or sumz != sum(zmin):

dae.factorize = True

Appendix D

IEEE 14-Bus System Data

This appendix provides the data of the IEEE 14-bus test systems used in most examples of this book. The topological scheme of this system in depicted in Figure 2.4 of Chapter 2.

D.1 Common Data

System bases are:

1.Power base: 100 MVA.

2.Frequency base: 60 Hz.

3.Voltage bases: 69 kV for buses 1 to 5, 13.8 kV for buses 6, 7 and 9 to 14, and 18 kV for bus 8.

Unless otherwise indicated, nominal ratings of devices are equal to system bases. Parameters are in pu with respect to device nominal ratings. For power flow analysis, bus 1 is the slack bus and the reference angle. For optimal power flow analysis, vmax = 1.06 pu and vmin = 0.94 pu are used as voltage security limits. Following sections provides the data of all devices used in the examples based on the IEEE 14-bus system. Parameter symbols are defined in the chapters where the devices are presented.

D.2 Static Data

This section provides the static data used throughout this book, unless explicitly specified. Bus, PQ load and shunt data are depicted in Table D.1. Static generator data are shown in Table D.2 whereas transmission line and transformer data are depicted in Table D.3.

D.3 Market Data

Table D.4 shows the generator bid data used in the examples of Chapter 6.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 523–528. springerlink.com c Springer-Verlag Berlin Heidelberg 2010

524

 

 

 

D IEEE 14-Bus System Data

Table D.1 Bus, PQ load and shunt data

 

 

 

 

 

 

 

 

 

Bus

Voltage Rating

pL

qL

bsh

 

 

#

kV

pu

pu

pu

 

 

 

 

 

 

 

 

 

1

69.0

-

-

 

-

 

 

 

 

 

 

 

 

 

 

2

69.0

0.217

0.127

 

-

 

 

3

69.0

0.942

0.19

 

-

 

 

4

69.0

0.478

-0.039

 

-

 

 

5

69.0

0.076

0.016

 

 

 

 

 

-

 

 

6

13.8

0.112

0.075

 

-

 

 

7

13.8

-

-

 

-

 

 

8

18.0

-

-

 

-

 

 

9

13.8

0.295

0.166

 

0.19

 

 

10

13.8

0.09

0.058

 

-

 

 

11

13.8

0.035

0.018

 

-

 

 

12

13.8

0.061

0.016

 

-

 

 

13

13.8

0.135

0.058

 

-

 

 

14

13.8

0.149

0.05

 

-

 

 

 

 

 

 

 

 

 

Table D.2 Static generator data

Bus

Type

p

G

v

qmax

qmin

 

 

 

G

G

G

#

 

pu

pu

pu

pu

 

 

 

 

 

 

1

Slack

2.324

1.06

 

9.9

-9.9

2

PV

0.4

1.045

 

0.5

-0.4

3

PV

0

1.01

 

 

0

 

0.4

6

PV

0

1.07

 

0.24

-0.06

8

PV

0

1.09

 

0.24

-0.06

D.4 Dynamic Data

Tables D.5 and D.6 show the synchronous machine and automatic voltage regulator data used throughout this book, unless otherwise indicated. Dynamic shaft data used in Example 15.5 are shown in Table D.7. Turbine governor data used in Example 16.1 are depicted in Table D.8. Power System stabilizer data used in Example 16.3 are shown in Table D.9.

D.5 FACTS Data

SVC Type I and Type II data used in Example 19.1 are depicted in Tables D.10 and D.11.

The data of the detailed STATCOM device used in Example 19.2 are as follows.

D.5 FACTS Data

 

 

 

 

 

 

 

 

 

 

 

 

525

 

Table D.3 Transmission line and transformer data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From bus

To Bus

Type

rhk

 

xhk

 

bh = bk

m

 

 

#

#

 

 

 

pu

 

pu

 

pu

pu/pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

Line

0.01938

0.05917

 

0.0528

-

 

 

1

5

 

Line

0.05403

0.22304

 

0.0492

-

 

 

2

3

 

Line

0.04699

0.19797

 

0.0438

-

 

 

2

4

 

Line

0.05811

0.17632

 

0.0374

-

 

 

2

5

 

Line

0.05695

0.17388

 

0.034

-

 

 

3

4

 

Line

0.06701

0.17103

 

0.0346

-

 

 

4

5

 

Line

0.01335

0.04211

 

0.0128

-

 

 

4

7

 

Transf.

0

0.20912

 

0

0.978

 

 

4

9

 

Transf.

0

0.55618

 

0

0.969

 

 

5

6

 

Transf.

0

0.25202

 

0

0.932

 

 

6

11

 

Line

0.09498

0.19890

 

0

-

 

 

6

12

 

Line

0.12291

0.25581

 

0

-

 

 

6

13

 

Line

0.06615

0.13027

 

0

-

 

 

7

8

 

Transf.

0

0.17615

 

0

1.0

 

 

7

9

 

Line

0

0.11001

 

0

-

 

 

9

10

 

Line

0.03181

0.08450

 

0

-

 

 

9

14

 

Line

0.12711

0.27038

 

0

-

 

 

10

11

 

Line

0.08205

0.19207

 

0

-

 

 

12

13

 

Line

0.22092

0.19988

 

0

-

 

 

13

14

 

Line

0.17093

0.34802

 

0

-

 

 

 

 

Table D.4 Generator bid data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus

 

Cp1

 

Cp2

 

pGmax

pGmin

 

 

 

 

 

 

#

e/MWh

e/MW2h

pu

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

20

 

0.04303

 

2.0

 

0

 

 

 

 

 

 

2

 

20

 

0.25

 

1.4

 

0

 

 

 

 

 

 

3

 

40

 

0.01

 

1.0

 

0

 

 

 

 

 

 

6

 

40

 

0.01

 

1.0

 

0

 

 

 

 

 

 

8

 

40

 

0.01

 

1.0

 

0

 

 

 

Dc nodes: The dc networks is composed of two dc nodes with Vdc,n = 10 kV. One of the node is the ground (v = 0).

Parallel RC: G = 0.0017 S, C = 0.0432 F.

VSC device: rT = 0.02 pu, xT = 0.1 pu, imax = 1.2 pu.

STATCOM regulators: vdcref = 1.06 pu, vacref = 1.0563 pu, T1 = T2 = Tac =

Tdc = 0.01 s, K = 100 pu/pu, KD = 0, KI = 5 rad/pu/s, KP = 10 rad/pu, Kac = Kdc = 1 pu/pu, mmax = 3, mmin = 0.5, αmax = π rad, αmin = −π rad.

526

 

 

 

 

 

 

 

 

 

 

 

 

D IEEE 14-Bus System Data

 

 

 

 

 

Table D.5 Synchronous machine data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Param.

 

Unit

 

Mach. 1

 

Mach. 2

Mach. 3

 

Mach. 4

 

Mach. 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus

 

 

#

 

1

 

2

 

3

 

 

6

 

 

8

 

 

 

Model

 

 

 

 

 

5.a

 

6.a

6.a

 

6.a

 

6.a

 

 

Sn

 

 

MVA

 

615

 

60

 

60

 

 

25

 

 

25

 

 

x

 

 

 

pu

 

0.2396

 

0

 

0

 

 

0.134

 

0.134

 

 

ra

 

 

 

pu

 

0

 

0.0031

 

0.0031

 

 

0.0041

 

0.0041

 

 

xd

 

 

 

pu

 

0.8979

 

1.05

 

1.05

 

 

1.25

 

 

1.25

 

 

xd

 

 

 

pu

 

0.2995

 

0.185

 

0.185

 

 

0.232

 

0.232

 

 

xd

 

 

 

pu

 

0.23

 

0.13

 

0.13

 

 

0.12

 

 

0.12

 

 

Td0

 

 

 

s

 

7.4

 

6.1

 

6.1

 

 

4.75

 

 

4.75

 

 

Td0

 

 

 

s

 

0.03

 

0.04

 

0.04

 

 

0.06

 

 

0.06

 

 

xq

 

 

 

pu

 

0.646

 

0.98

 

0.98

 

 

1.22

 

 

1.22

 

 

xq

 

 

 

pu

 

0.646

 

0.36

 

0.36

 

 

0.715

 

0.715

 

 

xq

 

 

 

pu

 

0.4

 

0.13

 

0.13

 

 

0.12

 

 

0.12

 

 

Tq0

 

 

 

s

 

0

 

0.3

 

0.3

 

 

1.5

 

 

1.5

 

 

Tq0

 

 

 

s

 

0.033

 

0.099

 

0.099

 

 

0.21

 

 

0.21

 

 

D

 

 

 

pu

 

2

 

2

 

2

 

 

2

 

 

2

 

 

 

H

 

MWs/MVA

 

5.148

 

6.54

 

6.54

 

 

5.06

 

 

5.06

 

 

 

 

 

Table D.6 Automatic voltage regulator data

 

 

 

 

 

 

 

 

 

 

 

 

 

Param.

Unit

 

AVR 1

AVR 2

AVR 3

AVR 4

AVR 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine

#

 

 

1

 

2

 

3

 

4

 

5

 

 

 

 

 

Model

 

 

 

 

1

 

1

 

1

 

1

 

1

 

 

 

 

 

vrmax

 

pu

 

9.9

 

2.05

 

1.7

 

2.2

 

2.2

 

 

 

 

 

vrmin

 

pu

 

0

 

0

 

0

 

1.0

 

1.0

 

 

 

 

 

Ka

 

pu/pu

 

200

 

20

 

20

 

20

 

20

 

 

 

 

 

Ta

 

s

 

0.02

 

0.02

 

0.02

 

0.02

 

0.02

 

 

 

 

 

Kf

 

s pu/pu

0.0012

0.001

 

0.001

 

0.001

0.001

 

 

 

 

 

Tf

 

s

 

1.0

 

1.0

 

1.0

 

1.0

 

1.0

 

 

 

 

 

Ke

 

pu

 

1.0

 

1.0

 

1.0

 

1.0

 

1.0

 

 

 

 

 

Te

 

s

 

0.19

 

1.98

 

1.98

 

0.7

 

0.7

 

 

 

 

 

Tr

 

s

 

0.001

0.001

0.001

0.001

0.001

 

 

 

 

 

Ae

 

-

 

 

0.0006

0.0006

0.0006

0.0006

0.0006

 

 

 

 

 

Be

 

1/pu

 

0.9

 

0.9

 

0.9

 

0.9

 

0.9

 

 

D.6 Wind Turbine Data

Wind turbine data used in Example 20.4 of Chapter 20 are given below.

Mechanical data: ngen = 40, npole = 4, nblade = 3, ηGB = 1/89, Ht = 1.5 MWs/MVA, Hm = 0.5 MWs/MVA, Ks = 1 pu, ρ = 1.225 kg/m3, R = 35 m, Tp = 3 s, and Kp = 10 rad/pu.

D.6 Wind Turbine Data

527

Table D.7 Dynamic shaft data

HHP

HIP

 

HLP

 

 

HEX

 

 

 

DHP

 

DIP

 

 

DLP

DEX

MWs

MWs

 

MWs

 

 

 

 

MWs

 

 

 

 

 

 

pu

 

pu

 

 

pu

 

pu

MVA

MVA

 

MVA

 

 

 

 

 

MVA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3348

 

0.7306

 

0.8154

 

0.0452

 

0.518

0.2240

 

0.224

0.145

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D12

D23

 

D34

 

 

 

 

 

D45

 

 

 

 

 

 

K12

 

K23

 

 

K34

K45

pu

 

pu

 

 

pu

 

 

 

 

 

pu

 

 

 

 

 

 

pu

 

pu

 

 

pu

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0518

 

0.0224

 

0.0224

 

0.0145

 

33.07

 

 

 

28 . 59

44.68

21.984

 

 

 

 

 

Table D.8 Turbine governor data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine

 

R

Ts

 

Tc

 

T3

T4

T5

pmax

pmin

 

 

 

 

 

 

#

 

 

pu

s

 

s

 

 

 

 

 

s

s

 

s

 

pu

 

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0.02

 

0.1

0.45

 

 

 

 

0

 

 

0

 

50.0

 

1.2

 

 

0.3

 

 

 

 

 

 

2

 

 

0.02

 

0.1

0.45

 

 

 

 

0

 

 

0

 

50.0

 

1.2

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

 

Table D.9 PSS data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVR

 

Kw

 

 

Tw

 

 

 

 

T1

 

T2

 

T3

 

T4

vsmax

vsmin

 

 

#

 

pu/pu

s

 

 

 

 

 

s

 

 

s

 

 

 

 

s

 

s

 

 

pu

 

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

5.0

 

 

10.0

0.28

 

0.02

 

0.28

0.02

0.1

 

-0.1

 

 

 

 

 

 

 

Table D.10 SVC Type I data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus

 

 

vref

 

 

 

 

 

K

 

 

 

 

 

KD

 

KM

 

 

T1

 

 

 

 

 

 

 

 

 

 

#

 

 

pu

 

 

rad/pu

-

 

pu/pu

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

1.0563

 

 

 

10.0

 

 

 

 

 

0

 

 

1.0

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2

 

 

Tm

 

 

 

 

 

xC

 

 

 

 

 

 

xL

 

αmax

αmin

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

s

 

 

 

 

 

pu

 

 

 

 

 

 

pu

 

rad

rad

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

0.01

 

 

 

 

0.1

 

 

 

 

 

0.1

 

3.14

 

-3.14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D.11 SVC Type II data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus

 

 

vref

 

Kr

 

 

 

 

 

 

Tr

bmax

bmin

 

 

 

 

 

 

 

 

 

 

 

#

 

 

 

pu

 

 

 

 

pu/pu

 

 

 

 

s

pu

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

1.0563

 

10.0

 

 

 

 

 

0.01

5.0

 

5.0

 

 

 

 

 

 

 

528 D IEEE 14-Bus System Data

Non-controlled speed wind turbine data: rr = 0.01 pu, rs = 0.01 pu, xμ = 3.0 pu, xr = 0.08 pu, and xs = 0.1 pu.

Doubly-fed asynchronous generator data: KV = 10 pu/pu/s, T = 0.01 s, rr = 0.01 pu, rs = 0.01 pu, xμ = 3.0 pu, xr = 0.08 pu, and xs = 0.1 pu.

Direct-drive synchronous machine data: Kdc = Kds = 1.0 pu/pu, Kqc = 200 pu/pu, Tdc = Tds = Tqc = Tqs = 0.01 s, ψp = 1.2 pu, rs = 0.01, pu, xd = 1.0, and xq = 0.8 pu.