Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / 0841558_16EA1_federico_milano_power_system_modelling_and_scripting

.pdf
Скачиваний:
82
Добавлен:
08.06.2015
Размер:
6.72 Mб
Скачать

19.5 Unified Power Flow Controller

 

 

 

433

¯

vq

 

 

 

ish

 

 

 

 

iq

 

 

 

v¯S

 

 

 

 

ip

v¯h

γ

 

θh

 

 

−φ

vp

 

φ

 

 

 

 

 

 

 

¯

 

 

 

 

ih

 

 

 

 

Fig. 19.19 UPFC phasor diagram

 

 

 

The resulting DAE system is as follows. Algebraic equations are:

ph =

1

 

(vhvk sin(θh − θk ) + vhvS sin γ)

(19.31)

xhk

pk = −ph

 

 

qh =

1

 

(vh2 − vhvk cos(θh − θk ) + vhvS cos γ) − iq vh

 

xhk

 

qk =

1

 

(vk2 − vhvk cos(θh − θk ) − vk vS cos γ)

 

xhk

 

where xhk is the series reactance of the loss-less transmission line connected in series to the UPFC device and Table 19.9 defines all other parameters. Di erential equations are:

v˙p =

1

(vp0 − vp)

(19.32)

Tr

v˙q =

1

(vq0 − vq )

 

 

 

Tr

 

˙

1

 

ref

 

 

ish =

 

[Kr(v

 

− vh) − ish]

 

Tr

 

 

In general vp0 = 0 so that the voltage v¯S is in quadrature with the line current

¯h (as for the SSSC device). All state variables undergo anti-windup limits. i

19.5.3Power Flow Model

The power flow model is obtained using the series-connected VSC static model (18.27) and (18.28) and the series-connected VSC static model (18.29) and (18.30) as shown in Figure 19.20. Since the UPFC does not produce active power, one has:

0 = psh + pse,

(19.33)

434

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 FACTS Devices

 

Table 19.9 Simplified UPFC model parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kr

Regulator gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu/pu

 

 

 

 

 

iqmax

Maximum iq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

iqmin

Minimum iq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

 

Tr

Regulator time constant

s

 

 

 

 

 

vpmax

Maximum vp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

vpmin

Minimum vp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

vqmax

Maximum vq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

vqmin

Minimum vq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pu

 

 

 

 

 

vh θh

 

 

 

 

 

vse αse

vk θk

ph + jqh

 

 

 

 

 

 

 

 

 

 

 

 

 

z¯se

+

 

 

 

 

 

 

 

 

 

 

 

pk + jqk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z¯sh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

psh + pse = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vsh αsh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19.20 Power flow UPFC equivalent circuit

The other three constraints required can be fixed as follows:

0

= vref − vsh

(19.34)

0

= pref − pk

(19.35)

0

= qref − qk

(19.36)

These constraints can be satisfied as long as ish ≤ imaxsh and ise ≤ imaxse .

19.5.4UPFC Initialization

The initialization of the UPFC device can be obtained using a static PV generator at bus h and a tie line between buses h and k, similarly to what described for the STATCOM and the SSSC devices. Alternatively, the static model described in Subsection 19.5.3 can be used.

Chapter 20

Wind Power Devices

This chapter presents wind speed and wind turbine models. Wind power is particularly interesting from the modelling viewpoint since it combines stochastic models (i.e., wind speed), mechanics (i.e., wind turbine), electrical machines, power electronics (i.e., VSC devices) and controls. For this reason, wind power models conclude this part dedicated to power system modelling.

The chapter is divided into two sections. Section 20.1 describes three wind speed models, namely the Weibull’s distribution, a wind model composed of average speed, ramp, gust and turbulence and the normalized Mexican hat wavelet model. Section 20.2 describes three models of wind turbines, namely the constant speed wind turbine with squirrel-cage induction generator, the variable speed wind turbine with doubly-fed (wound rotor) asynchronous generator and the variable speed wind turbine with direct-drive synchronous generator.

20.1Wind Speed Models

The best way to model the wind speed is by an historical series of measurement data. However, measures are not adequate for comparison and benchmarking. Thus, fictitious mathematical wind speed models are of interest.

The wind speed models described in this section are the Weibull’s distribution, a composite model that includes average speed, ramp, gust and turbulence, and the Mexican hat wavelet model.

Table 20.1 defines all parameters used in wind speed models that are described in the following subsections. Air density ρ at 15C and standard atmospheric pressure is 1.225 kg/m3, and depends on the altitude (e.g., at 2000 m ρ is 20% lower than at the sea level).

Wind speed time sequences are calculated after solving the power flow and initializing wind turbine variables. To simulate the smoothing of highfrequency wind speed variations over the rotor surface, the actual wind speed

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 435–456. springerlink.com c Springer-Verlag Berlin Heidelberg 2010

436

20 Wind Power Devices

values is filtered through low-pass filter before being used for computing the mechanical power of the wind turbine (see Figure 20.1):

 

 

 

v˙m = (ˇvw (t) − vw )/Tw

(20.1)

 

 

 

 

 

 

 

 

 

vw

 

 

Wind

 

vˇw

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Sequence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + Tws

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20.1 Low-pass filter to smooth wind speed variations

 

 

 

Table 20.1 Wind speed parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

 

 

 

 

 

 

Unit

 

 

 

 

 

 

 

 

 

cw

 

Scale factor for Weibull’s distribution

-

 

 

 

hw

 

Height of the wind speed signal

m

 

 

kw

 

Shape factor for Weibull’s distribution

-

 

 

 

nhar

 

Number of harmonics

 

 

 

int

 

 

t0

 

Centering time of the Mexican hat wavelet

s

 

 

teg

 

Ending gust time

 

 

 

s

 

 

ter

 

Ending ramp time

 

 

 

s

 

 

tsg

 

Starting gust time

 

 

 

s

 

 

tsr

 

Starting ramp time

 

 

 

s

 

 

Tw

 

Low-pass filter time constant

s

 

 

vwg

 

Gust speed magnitude

 

 

 

m/s

 

 

vwr

 

Ramp speed magnitude

 

 

 

m/s

 

 

vwn

 

Nominal wind speed

 

 

 

m/s

 

 

z0

 

Roughness length

 

 

 

m

 

 

Δf

 

Frequency step

 

 

 

Hz

 

 

Δt

 

Sample time for wind measurements

s

 

 

ρ

 

Air density

 

 

 

 

 

 

kg/m3

 

 

σ

 

Shape factor of the Mexican hat wavelet

-

 

 

20.1.1Weibull’s Distribution

A common way to describe the wind speed is by means of the Weibull’s distribution, which is as follows:

f (v

, c

 

, k

) =

kw

vk−1e(

vw

)kw

(20.2)

w

cw

 

w

 

w

 

cwk

w

 

 

 

 

 

 

 

 

 

 

where vw is the wind speed and cw and kw are constants as defined in the wind model data matrix. Time variations ξw (t) of the wind speed are then obtained by means of a Weibull’s distribution, as follows:

20.1 Wind Speed Models

437

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20.2 Weibull’s distribution model of the wind speed

 

ι(t)

 

1

 

ξw (t) =

ln

kw

(20.3)

cw

where ι(t) is a generator of random numbers (ι [0, 1]). Usually the shape factor kw = 2, which leads to the Rayleigh’s distribution, while kw > 3 ap-

proximates the normal distribution and kw = 1 gives the exponential distri-

 

 

, 10). Finally,

bution. The scale factor c should be chosen in the range cw (1a

the wind speed is computed setting the initial average speed vw determined

at the initialization step as mean speed:

 

 

vˇw (t) = (1 + ξw (t) − ξwa )vwa

(20.4)

where ξa

is the average value of ξ (t).

 

w

w

 

Example 20.1 Weibull’s Distribution

An example of wind speed time sequence generated using a Weibull’s distribution is depicted in Figure 20.2. Wind data are vwn = 16 m/s, Δt = 0.1 s, Tw = 0.5 s, cw = 20 and kw = 2.

438

20 Wind Power Devices

20.1.2Composite Wind Speed Model

This subsection describes a composite wind model similar to what proposed in [343] and [9]. This model considers that the wind speed is composed of four parts:

1.Average and initial wind speed vwa .

2.Ramp component of the wind speed vwr .

3.Gust component of the wind speed vwg .

4.Wind speed turbulence vwt .

The resulting wind speed vˇw is:

vˇ

(t) = va

+ vr

(t) + vg

(t) + vt

(t)

(20.5)

w

w

w

w

w

 

 

where all components are time-dependent except for the average speed vwa .

Wind Ramp Component

The wind ramp component is defined by an amplitude Arw and starting and ending times, trs and tre respectively:

 

 

t < tr

:

vr

(t) = 0

 

(20.6)

 

 

 

 

s

 

w

 

 

 

tr

 

t

 

tr

:

vr

(t) = Ar

t − tsr

 

ter − tsr

 

s

 

e

 

w

w

 

 

t > tr

:

vr

(t) = Ar

 

 

 

 

 

 

e

 

w

w

 

 

Wind Gust Component

The wind gust component is defined by an amplitude Agw ending times, tgs and tge respectively:

t < tgs : vwg (t) = 0

and starting and

(20.7)

ts

≤ t ≤ te

: vw

(t) =

Ag

 

2

g

g

g

 

w

 

 

t > tg

: vg

(t) = Ag

 

 

e

w

 

w

 

1

cos

2π

t − tsg

 

teg − tsg

 

 

 

Wind Turbulence Component

The wind turbulence component is described by a power spectral density, as follows:

 

 

1

 

 

va

 

2

 

 

Swt =

(ln(hw /z0))

w

(20.8)

 

f

5

 

 

1 + 1.5

3

 

 

 

 

 

 

 

 

vwa

 

where f is the frequency, hw the wind turbine tower height, z0 is the roughness length and is the turbulence length scale:

20.1 Wind Speed Models

 

439

hw < 30 :

= 20h

(20.9)

hw 30 :

= 600

 

Table 20.2 depicts roughness values z0 for a variety of ground surfaces.

Table 20.2 Roughness length z0 for a variety of ground surfaces [231, 281]

Ground surface

Roughness length z0 [m]

 

 

 

Open sea, sand

104 ÷

103

Snow surface

3

3÷ 5

3

10

· 102

Mown grass, steppe

10

÷

10

Long grass, rocky ground

0.04 ÷ 0.1

Forests, cities, hilly areas

1 ÷

5

The spectral density is then converted in a time domain cosine series as illustrated in [283]:

 

 

nhar

 

 

 

vt

(t) =

 

 

 

cos(2πfit + φi + Δφ)

(20.10)

 

St

(fi)Δf

w

 

 

w

 

 

 

i=1

where fi and φi are the frequency and the initial phase of the ith frequency component, being φi random phases (φi [0, 2π)). The frequency step Δf should be Δf (0.1, 0.3) Hz. Finally Δφ is a small random phase angle introduced to avoid periodicity of the turbulence signal.

Example 20.2 Composite Wind Model

An example of wind speed time series generated using a composite model is depicted in Figure 20.3. Wind data are vwn = 16 m/s, Δt = 0.1 s, Tw = 0.5 s, trs = 5 s, tre = 15 s, vwr = 0.5 m/s, tgs = 5 s, tge = 15 s and vwg = 0.2 m/s, hw = 50 m, z0 = 0.01 m, Δf = 0.1 Hz and n = 50.

20.1.3Mexican Hat Wavelet Model

The Mexican hat wavelet is a deterministic wind gust that has been standardized by IEC [139]. The Mexican hat wavelet is the normalized second derivative of the Gauss’ distribution function, i.e., up to scale normalization, the second Hermite’s function, as follows:

 

 

 

w

 

(t

 

t )2

 

 

(t−t0 )2

 

w

w

w

 

σ2

 

 

 

vˇ

(t) = va

+ (vg

va )

1

 

0

 

e2σ2

(20.11)

 

 

 

 

 

 

 

where t0 is the centering time of the gust, σ is the gust shape factor, vwg is the peak wind speed value and vwa the average speed value.

440

 

 

 

20 Wind Power Devices

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20.3 Composite model of the wind speed

Example 20.3 Mexican Hat Wavelet Wind Model

Figure 20.4 shows an example of wind gust modeled through a Mexican hat wavelet with vwn = 16 m/s, vwa = 12 m/s, Δt = 0.1 s, Tw = 0.5, t0 = 10 s, σ = 1, and vwg = 25 m/s.

20.2Wind Turbines

This section describes the three most common wind turbine types: the noncontrolled speed wind turbine with squirrel-cage induction generator, the controlled speed wind turbine with doubly-fed (wound rotor) asynchronous generator and the direct-drive synchronous generator [4]. Figure 20.5 depicts three wind turbines types, while Table 20.3 illustrates a few recent wind turbines data as documented in [91].

The squirrel-cage induction generator type is the oldest one. It has the advantages of being relatively cheap and electrically e cient. However, due to the lack of speed regulation, it is not aerodynamically e cient. This kind of wind generators is also noisy, requires a gearbox and the shaft su ers mechanical stresses (i.e., oscillations due the shadow e ect and blade torsional modes). It has to be noted that the speed control is theoretically possible for this machines. However, this would require refurbishing existing turbines.

20.2 Wind Turbines

441

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20.4 Mexican hat model of the wind speed

The doubly-fed asynchronous generator and direct-drive synchronous generator are aerodynamically more e cient than the squirrel-cage induction generator type thanks to the speed control. However, the electrical e ciency is lower. The need of two VSC converters with a back-to-back connection increases the cost but provides the ability of controlling the voltage and the power output. In the case of the synchronous generator, the converters are relatively more expensive than for the asynchronous generator because have to stand the entire generator power output. This fact has limited the di usion the the direct-drive type. However, VSC converter cost is rapidly decreasing, hence the increasing interest in synchronous generators for wind power applications. Finally, no gearbox is required for the synchronous generator since the VSC converters fully decouple the machine from the grid.

20.2.1Single Machine and Aggregate Models

The wind turbine and generators models that are described in following subsections are adequate for a single machine as well as for a wind park composed of several generators (i.e., aggregate wind turbine model). The rules for a correct definition of the wind turbine data are:

1.The nominal power Sn is the total power in MVA of the single or aggregate wind turbine. If the wind turbine is an aggregate equivalent model of a

442

20 Wind Power Devices

 

v¯s

Gear box

¯

is

(a)

Grid

 

 

v¯s

Gear box

 

¯

 

is

(b)

 

Grid

¯

v¯

¯

ir

r

ic

 

VSC Converter

 

 

 

¯

 

¯

ic

 

is

 

(c)

 

Grid

 

v¯s

 

 

VSC Converter

v¯c

 

 

Fig. 20.5 Wind turbine types. (a) Non-controlled speed wind turbine with squirrelcage induction generator; (b) Controlled speed wind turbine with doubly-fed asynchronous generator; (c) Controlled speed wind turbine with direct-drive synchronous generator

Table 20.3 Recent wind turbines [91]

Type

Power

Diam.

Height

Control

Speed

 

 

 

 

 

 

 

 

[MW]

[m]

 

[m]

 

[rpm]

 

 

 

 

 

 

 

Bonus

2

86

 

80

GD/TS/PS

17

NEC NM 1500/72

1.5

72

 

98

GD/TS/PS

17.3

Nordex N-80

2.5

80

 

80

GD/VS/PC

19

Vestas V-80

2

80

 

78

GD/VS/PC

19

Enercon e-66

1.5

66

 

85

GD/VS/PC

22

GD gearbox drive DD direct drive

VS variable speed

 

TS two speed

PC pitch control PS shift pitch by stall