Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / 0841558_16EA1_federico_milano_power_system_modelling_and_scripting

.pdf
Скачиваний:
80
Добавлен:
08.06.2015
Размер:
6.72 Mб
Скачать

Chapter 19

FACTS Devices

This chapter describes Thyristor Controlled Reactor (TCR) and Voltage Sourced Converter (VSC) based Flexible AC Transmission System (FACTS) devices. In particular, the considered TCR-based FACTS devices are the static var compensator (Section 19.1) and the thyristor controlled series compensator (Section 19.2), whereas VSI-based FACTS devices are the static synchronous compensator (Section 19.3), the static synchronous series compensator (Section 19.4) and the unified power flow controller (Section 19.5).

19.1Static Var Compensator

The Static Var Compensator (SVC) is a variable shunt capacitor that is varied to maintain a constant voltage at the bus to which it is connected. The admittance is varied using a thyristor-based switch, as shown in Figure 19.1.a. The firing angle α controls the turn-on period of the thyristor and hence varies the equivalent reactance of the SVC. Assuming a balanced, fundamental frequency operation, the equivalent susceptance of the SVC is a function of the firing angle α [129]:

bSVC(α) =

2α − sin 2α − π(2 − xL/xC )

(19.1)

πxL

 

 

From the numerical viewpoint, using the susceptance as defined in (19.1) is more stable than the reactance, because 1/bSVC(α) tends to infinity at the resonant point, defined by:

2αr sin 2αr − π(2 − xL/xC ) = 0

(19.2)

19.1.1SVC Type I

As discussed above, the controlled variable is the firing angle α. Thus, the regulator has to vary α in order to control the bus voltage (see Figure 19.2).

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 413–434. springerlink.com c Springer-Verlag Berlin Heidelberg 2010

414

19 FACTS Devices

h

h

α

 

 

α

 

bSVC

xC

xL

 

(a)

(b)

Fig. 19.1 SVC schemes: (a) firing angle model and (b) equivalent susceptance model

 

 

 

 

 

 

 

 

 

 

 

αmax

vh

 

 

 

vM

 

 

 

 

 

 

 

 

α

 

KM

 

 

 

K(T1s + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TM s + 1

 

 

 

 

+

 

T2s + KD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vref

αmin

Fig. 19.2 SVC Type I control diagram

The DAE system is follows:

 

v˙M = (KM vh − vM )/TM

(19.3)

α˙ = (−KD α + K

T1

(vM − KM vh) + K(vref − vM ))/T2

T2TM

qh =

2α − sin 2α − π(2 − xL/xC )

vh2

 

πxL

The state variable α undergoes an anti-windup limiter which indirectly allows limiting the SVC current. Table 19.1 defines all parameters of the SVC Type I.

19.1.2SVC Type II

A common approximation consists in assuming that the controlled variable is bSVC and not the firing angle α (see Figure 19.1.b). The simplified control scheme is depicted in Figure 19.3 and undergoes the following di erential equation:

˙

ref

− vh) − bSVC)/Tr

(19.4)

bSVC = (Kr(v

 

19.1 Static Var Compensator

415

 

 

 

Table 19.1 SVC Type I parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

Regulator gain

rad/pu

 

 

 

 

KD

 

Integral deviation

-

 

 

 

 

KM

 

Measure gain

pu/pu

 

 

 

 

T1

 

Transient regulator time constant

s

 

 

 

 

T2

 

Regulator time constant

s

 

 

 

 

TM

 

Measure time delay

s

 

 

 

 

vref

 

Reference Voltage

pu

 

 

 

 

xL

 

Reactance (inductive)

pu

 

 

 

 

xC

 

Reactance (capacitive)

pu

 

 

 

 

αmax

 

Maximum firing angle

rad

 

 

 

 

αmin

 

Minimum firing angle

rad

 

 

 

 

 

 

 

 

 

 

bSVCmax

 

 

 

 

vh

 

 

 

 

 

 

 

 

 

 

bSVC

 

 

 

 

 

Kr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

Tr s + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vref bminSVC

Fig. 19.3 SVC Type II control diagram

The model is completed by the algebraic equation expressing the reactive power injected at the SVC node:

q = bSVCv2

(19.5)

h

 

The regulator has an anti-windup limiter, i.e., the reactance bSVC is locked if one of its limits is reached. Table 19.2 reports data and control parameters for the SVC type 2.

19.1.3SVC Initialization

Although there is no particular issue in including the detailed SVC model into the power flow analysis, SVC devices are typically initialized after power flow analysis. To impose the voltage regulation a PV generator with p0G = 0 can be used. The only di erence is that the reactive power limits of the PV generator do not coincide exactly with the susceptance limits of the SVC device, in fact, qGmax = bmaxSVCvh2 only for the nominal value of the bus voltage.

416

 

 

 

 

 

 

19 FACTS Devices

 

 

Table 19.2 SVC Type II parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

Bus code

-

 

 

 

 

 

bSVCmax

Maximum susceptance

 

pu

 

 

 

 

 

bSVCmin

Minimum susceptance

 

pu

 

 

 

 

 

Kr

Regulator gain

pu/pu

 

 

 

 

 

Tr

Regulator time constant

 

s

 

 

 

 

 

vref

Reference Voltage

 

pu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19.4 Comparison of SVC models for the IEEE 14-bus system

Example 19.1 Comparison of SVC Models

Figure 19.4 shows a comparison of the transient response of the SVC models Type I and II described above. The plot was obtained substituting the static shunt admittance at bus 9 of the IEEE 14-bus system for an SVC device. All SVC data are given in Appendix D. The reference voltage of SVC regulators is vref = 1.0563 pu, i.e., the same voltage value as obtained by the power flow analysis using the static shunt admittance. The regulators of both SVC models improve the voltage profile at bus 9. SVC Type II shows a zero static error (due to the integral regulator) but presents high-frequency oscillations.

xTCSC

19.2 Thyristor Controlled Series Compensator

417

19.2Thyristor Controlled Series Compensator

The Thyristor Controlled Series Compensator (TCSC) allows varying the series reactance of a transmission line and, thus, regulating the active flow through the transmission line itself. The functioning of the TCSC is similar to the SVC, but for the fact that the TCSC is a series device, as shown in Figure 19.5.

α

 

xL

 

 

 

h

k

h

xTCSC

k

α

xC

 

 

 

 

 

 

 

(a)

 

 

(b)

 

Fig. 19.5 TCSC schemes: (a) firing angle model and (b) equivalent susceptance model

The regulated variable is the firing angle α. The equivalent series reactance in balanced, fundamental frequency conditions is [129]:

 

 

 

xTCSC(α) =

xC πkx4 cos kx(π − α)

(19.6)

− π cos kx(π − α) 2kx4α cos kx(π − α)

+2αkx2 cos kx(π − α) − kx4 sin 2α cos kx(π − α)

+kx2 sin 2α cos kx(π − α) 4kx3 cos2 α sin kx(π − α)

4kx2 cos α sin α cos kx(π − α) /[π(kx4 2kx2 + 1) cos kx(π − α)]

 

 

 

 

 

 

kx =

xC

 

xL

 

 

 

 

The power injections at buses h and k are:

 

 

 

ph = vhvk b(α) sin(θh − θk)

(19.7)

 

 

qh = vh2b(α) − vhvk b(α) cos(θh − θk )

 

 

 

pk = −ph = −vhvk b(α) sin(θh − θk )

 

 

 

qk = vk2b(α) − vhvk b(α) cos(θh − θk )

 

where

 

1

 

(19.8)

 

 

b(α) =

 

 

 

 

xTCSC(α)

The model (19.7) can show numerical issues in case xTCSC(α) = 0.

418

19 FACTS Devices

Since the TCSC device is always connected in series with a transmission line, another common model considers the series of the TCSC and the transmission line as an unique device. Assuming a loss-less line and that the series reactance of the line is xhk , the resulting power flow equations are:

phk = vhvk b(α, xhk ) sin(θh − θk)

(19.9)

pkh = −phk

 

qhk = vh2b(α, xhk ) − vhvk b(α, xhk ) cos(θh − θk )

 

qkh = vk2b(α, xhk ) − vhvk b(α, xhk ) cos(θh − θk )

 

where:

 

1

 

 

b(α, xhk ) =

 

 

(19.10)

xhk + xTCSC(α)

This model also allows removing numerically issues of (19.7) of xTCSC(α) if

|xminTCSC| < xhk .

 

 

 

 

 

 

 

 

 

αmax

 

 

pref +

Kw Tw s

1

 

T2s + 1

α

 

b

 

 

 

 

 

 

b(α)

 

 

 

 

 

Tw s + 1

 

T1s + 1

 

T3s + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ph

x1

 

x2

 

x3

αmin

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19.6 TCSC control diagram

A common control scheme for TCSC devices is shown in Figure 19.6 and works for regulating both the firing angle α and the reactance xTCSC. The DAE system is as follows:

x˙ 1

= −Kw(pref − ph)/Tw − x1/Tw

(19.11)

x˙ 2

= (x1 − x2 + (pref − ph))/T1

 

x˙ 3

= ((1 − T2/T3)x2 − x3)/T3

 

where all parameters are defined in Table 19.3. The output signal of the leadlag block can be either the firing angle α or, using a simplified model, the reactance xTCSC. Considering the firing angle, one has:

α =

T2

x2 + x3

(19.12)

 

 

T3

 

If using the reactance xTCSC, equation (19.12) and the control scheme of Figure 19.6 are still valid but substituting α with xTCSC.

19.3 Static Synchronous Compensator

419

 

 

 

Table 19.3 TCSC parameters

 

 

 

 

 

 

 

 

 

Variable

 

Description

Unit

 

 

 

 

 

 

 

Kw

 

Regulator gain

pu/pu

 

 

pref

 

Reference power

pu

 

 

T1

 

Low-pass time constant

s

 

 

T2

 

Lead time constant

s

 

 

T3

 

Lag time constant

s

 

 

Tw

 

Washout time constant

s

 

 

xC

 

Reactance (capacitive)

pu

 

 

xL

 

Reactance (inductive)

pu

 

 

xTCSCmax

(αmax)

Maximum reactance (firing angle)

pu (rad)

 

 

 

xTCSCmin

(αmin)

Minimum reactance (firing angle)

pu (rad)

 

19.2.1TCSC Initialization

There are various methods for initializing a TCSC. A possibility is to include the detailed model of the TCSC in the power flow analysis. However, this is not the common practice. Another strategy is to use a static tie line model such that described in Subsection 11.1.2 of Chapter 11.

19.3Static Synchronous Compensator

The Static Synchronous Compensator (STATCOM) is a shunt-connected VSC-based FACTS device that regulates the voltage of the ac bus to which it is connected (see Figure 19.7). The e ect is similar to the SVC device, but the internal model is rather di erent, as discussed in the following sections.

vh θh

ph + jqh

h

+

vdc

Fig. 19.7 STATCOM scheme

transformer. Imposing vdc obtained:

420

19 FACTS Devices

19.3.1Detailed Model

The detailed model consists of a shunt-connected VSC device with a capacitor in the dc side. The model is composed of three parts, namely the dc network, the VSC and the controllers.

Dc network : The dc side is a parallel RC defined by (17.10) and (17.2). Furthermore, the dc network must contain two nodes, one of which is connected to the ground. The VSC and the RC element are connected in parallel to the dc nodes.

Shunt-connected VSC model : The equations of the VSC are (17.2) and (18.9)- (18.12).

Regulators: The ac voltage control is obtained regulating the modulating amplitude am [322]:

a˙ m = T2

−KDam + K(vacref − vacm)

T2Tac (Kacvh − vacm) (19.13)

1

 

 

KT1

whereas the dc voltage control is regulated through the firing angle α:

α˙ =

KP

− KI

vdcm + KI vdcref

KP Kdc

vdc

(19.14)

Tdc

Tdc

Finally, low pass filters are used for modelling both the ac and dc voltage measurements:

v˙acm

= (−vacm + Kacvh)/Tac

(19.15)

v˙dcm

= (−vdcm + Kdcvdc)/Tdc

 

Voltage and modulating amplitude controls along with the measurement transfer functions are depicted in Figure 19.8. Both the ac and dc voltage controls undergo a windup limiter. For the dc voltage control, the limits on α can be computed imposing the power balance:

 

 

v2

2 2

 

 

 

 

 

dc

 

 

 

0 =

 

 

 

+ rT iac − vhgT

(19.16)

 

rdc

 

+

 

vdcvhgT cos(α) +

 

 

vdcvhbT sin(α)

 

3/8

3/8

where gT + jbT = 1/(rT + jxT ) is the impedance of the VSC embedded = vdcref and vh = vacref, from (19.16) it can be

 

a2 + b2

±

 

a2 + b2

 

a2 + b2

 

 

bc

 

 

 

bc

2

c2 − a2

 

cos(α) =

 

 

 

 

 

 

 

(19.17)

19.3

Static Synchronous Compensator

 

 

 

 

 

421

 

 

 

 

 

 

 

 

 

 

 

ammax

 

 

 

 

 

 

 

 

vacm

 

 

 

 

 

 

 

 

vh

 

 

Kac

 

 

K(T1s + 1)

 

am

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tacs + 1

 

 

 

+

 

T2s + KD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vacref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ammin

 

 

 

 

 

 

 

 

 

 

 

 

 

αmax

 

 

 

 

 

 

 

vdcm

 

 

 

 

 

vdc

 

 

Kdc

 

 

KP s + KI

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tdcs + 1

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vdcref

αmin

Fig. 19.8 STATCOM ac and dc voltage control diagrams

where

b =

3/8

vrefvrefgT

(19.18)

a =

 

 

 

3/8vrefvrefb

T

 

 

 

 

 

dc

ac

 

 

 

 

 

dc

dc

 

 

 

 

 

ac

 

 

 

 

ref 2

(vref)2

2

c = (vac ) gT

rdc

− rT iac

Finally, the limits for the firing angle α are computed imposing in the equation (19.17) the limits imax and imin. Table 19.4 defines all parameters required by STATCOM regulators.

19.3.2Simplified Dynamic Model

A simplified STATCOM current injection model has been proposed in [61, 122, 252]. The STATCOM current ish is always kept in quadrature in relation to the bus voltage so that only reactive power is exchanged between the ac system and the STATCOM. The equivalent circuit and the control scheme are shown in Figure 19.9. The di erential equation and the reactive power injected at the STATCOM node are, respectively:

˙

ref

− vh) − ish)/Tr

(19.19)

ish = (Kr (v

 

qh = ishvh

422

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

FACTS Devices

 

 

 

 

 

 

 

 

 

 

 

Table 19.4 STATCOM regulator parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable

Description

 

 

 

 

 

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

Gain of the ac voltage control

 

 

pu/pu

 

 

 

 

 

 

 

Kac

Gain of the ac measurement

 

 

pu/pu

 

 

 

 

 

 

 

KD

Integral deviation of the ac voltage control

-

 

 

 

 

 

 

 

Kdc

Gain of the dc measurement

 

 

pu/pu

 

 

 

 

 

 

 

KI

Integral gain for the dc voltage control

rad/pu/s

 

 

 

 

 

 

 

KP

Proportional gain for the dc voltage control

rad/pu

 

 

 

 

 

 

 

imax

Maximum current

 

 

 

 

 

 

 

pu

 

 

 

 

 

 

 

imin

Minimum current

 

 

 

 

 

 

 

pu

 

 

 

 

 

 

 

rdc

Resistance of the dc circuit

 

 

pu

 

 

 

 

 

 

 

 

rT

Resistance of the ac circuit

 

 

pu

 

 

 

 

 

 

 

 

T1

Transient time constant of the ac voltage control

s

 

 

 

 

 

 

 

 

T2

Time constant of the ac voltage control

s

 

 

 

 

 

 

 

Tac

Time constant of the ac measurement

s

 

 

 

 

 

 

 

Tdc

Time constant of the dc measurement

s

 

 

 

 

 

 

 

vref

ac reference voltage

 

 

 

 

 

 

 

pu

 

 

 

 

 

 

 

vdcref

dc reference voltage

 

 

 

 

 

 

 

pu

 

 

 

 

 

 

 

 

xT

Reactance of the ac circuit

 

 

pu

 

 

 

 

 

vh θh

 

vh

 

 

 

 

 

imax

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ish

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

Tr s + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ish

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vref

imin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19.9 STATCOM circuit and control diagram

where all parameters are defined in Table 19.5. The current ish undergoes an anti-windup limiter.

19.3.3Power Flow Model

The STATCOM power flow model is simply obtained based on the power flow model of the VSC device (18.27) and (18.28). In particular, (18.28) are:

0 = psh, 0 = vref − vsh

(19.20)

The latter condition is satisfied only if the current ish ≤ imaxsh .