Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Chung-Yu Wu - Analog Circuit Design

.pdf
Скачиваний:
49
Добавлен:
05.06.2015
Размер:
29.49 Mб
Скачать

+VDD

VBIAS

+

 

 

 

 

 

Vin

C

L

- V

out +

 

-

 

 

 

 

 

 

CL

CMFB

 

 

 

 

-VSS

CMFB: Common-mode feedback circuitry

3.High-performance micropower fully differential OP AMP.

Simplified schematic of the class AB amplifier:

 

A

+VDD

 

M17

M12

M11

 

 

 

M14

BIAS3

 

 

BIAS1

M20

 

 

M16

M5

M1

M2

M6

Iin(+)

 

 

Iin(-)

OUT(+)

 

 

OUT(-)

M7

 

 

M8

 

I1

I2

M4

 

 

M3

 

BIAS2

M19

BIAS4

 

 

I

 

I

M15

M18

M10

M9

M13

A -VSS

8 - 27

CHUNG-YU WU

+VDD

M17

BIAS3

M20

 

M5

 

Iin(+)

OUT(+)

4 μA

I

class AB

M7

 

3μA

 

 

 

2 μA

 

class A

 

1μA

 

I

 

 

-400 -200

200mV

400mV

Vin

 

− 1μA

 

− 2μA

M12

I2

M1

M4

I2

M9

M6

Iin (-)

OUT(-)

M8

BIAS2

M15

I

M13

-VSS

Active portion of the amplifier for a positive input signal.

Detailed schematic of the entire amplifier without CMFB:

 

 

 

+VDD

 

 

 

M23

 

M11

 

M14

 

M12

 

 

 

 

 

 

 

M17

 

 

 

 

 

M20

M22

 

 

M27

 

 

M5

M1

M2

M26

M16

 

M6

 

OUT(+)

Iin(+)

 

 

Iin(-)

OUT(-)

 

 

 

 

 

M7

I2

I1

M8

 

 

 

 

 

M19

M3

M4

 

M24

M30

M15

 

 

 

M60A

M18

M25

 

M10

M21

M13

 

M9

 

-VSS

8 - 28

CHUNG-YU WU

*NMOS dynamically biased current mirror:

 

 

 

 

 

I30

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

M30

 

 

M15

 

 

 

 

10

 

 

40

 

 

 

 

 

10

 

 

10

 

 

 

 

I9

 

 

 

 

 

M9

 

 

 

 

 

M

13

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

40

 

 

10

 

 

 

 

 

10

 

 

 

 

 

 

 

 

- VSS

 

If I9 = I30 ,

VGS 9

= VGS13

= VGS15

 

 

 

VDS13

= VGS 30 -VGS9

 

 

Set

VDG13 = -VTH ÞVGS 30 = 2VGS 9 -VTH

 

Design

(W )

 

, such that

V

= 2V

-V

 

 

L

30

 

 

GS 30

GS 9

TH

 

Þ M 13

is always sat. at the edge of the linear region.

Þ Output swing-

*Dynamic CMFB is used.

 

AMPLIFIER DEVICE SIZES

 

DEVICE

Z(μm)

L(μm)

 

 

 

 

M1

180

 

6

 

 

 

 

M2

180

 

6

 

 

 

 

M3

140

 

6

 

 

 

 

M4

140

 

6

 

 

 

 

M5

150

 

6

 

 

 

 

M6

150

 

6

 

 

 

 

M7

200

 

6

 

 

 

 

M8

200

 

6

 

 

 

 

M9

22

 

10

 

 

 

 

M10

22

 

10

 

 

 

 

8 - 29

CHUNG-YU WU

M11

29

7

 

 

 

M12

29

7

 

 

 

M13

22

10

 

 

 

M14

29

7

 

 

 

M15

22

6

 

 

 

M16

29

6

 

 

 

M17

29

7

 

 

 

M18

22

10

 

 

 

M19

22

6

 

 

 

M20

29

6

 

 

 

M21

20

9

 

 

 

M22

6

12

 

 

 

M23

28

6

 

 

 

M24

6

14

 

 

 

M25

20

9

 

 

 

M26

6

12

 

 

 

M27

28

6

 

 

 

M30

6

14

 

 

 

AMPLIFIER SPECIFICATIONS

CORE AMPLIFIER SPECIFICATIONS

(0-5 Volts Supply)

100μW Quiescent Power Dissipation

DIFFERENTIAL GAIN

>10.000«

UNITY GAIN FREQUENCY

2 MHz«

 

NOISE

140 nV/

Hz

1KHz

 

50 nV/

Hz

white

OUTPUT SWING

0.5 Volts from Supply«

AREA

300 mils2

 

 

 

 

«inferred from filter measurement Ref: IEEE JSSC, vol. SC-20, pp.1122-1132, Dec. 1985

8 - 30

CHUNG-YU WU

4.Fully differential class AB OP AMP with CMFB circuit

 

 

 

 

 

 

 

+ VDD

 

 

 

 

 

 

 

100μA

 

 

 

M18

 

M16

M15

 

 

M17

 

 

100μA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M20

BIAS

 

 

BIAS

M19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MC1

MC2

+

Vin-

M2

M1

 

Vin+

 

 

-

MC12 MC11

 

 

 

V

M8

 

M

 

 

V

 

 

 

 

 

 

out

 

7

 

out

 

 

 

 

 

 

 

 

 

 

 

 

 

MC4

MC5

 

 

 

M6

M5

 

 

 

 

 

MC15

MC14

BIAS

 

 

 

 

 

M3

M4

 

 

 

 

 

 

BIAS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M14

BIAS

5μA

5μA

 

BIAS

M13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MC6

 

M

C7

 

 

 

 

 

 

 

 

M

C17

M

 

 

 

 

 

M10

M9

 

M11

 

 

 

C16

 

 

 

 

 

M12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics:

 

 

 

Technology

: 5um, P-well CMOS, double-poly cap.

Open loop gian

: 1180

unity-gain freq

: 10Mhez

CMRR

: 61db

power consumption : 2.3mw

Area

: 290 mils2

power supply

: ± 5V

Ref: IEEE JSSC ,vol.sc-20 , pp.1103-1112 , Ddec,1985

8 - 31

CHUNG-YU WU

§8-5 Recent Design Examples of CMOS OP AMPs

§8-5.1 Fast-settling CMOS OP AMP for SC Circuit with 90-dB DC Gain

Reference : IEEE JSSC, vol.25, no.6, pp.1379-1384, Dec 1990.

1.Gain boosting

1)Cascode gain stage with gain enhancement

+VDD

Vref

+

Vo

Cload

 

Aadd

 

M2

 

_

 

M1

Vi

-VSS

Rout = [g m 2ro2 ( Aadd + 1) + 1]ro1 + ro 2

Atot = g m1ro1[g m 2ro 2 ( Aadd + 1) + 1]

Aorig = g m1 g m2 ro1ro 2

2) Repetitive implementation of gain enhancement +VDD

Vo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M2

 

 

 

M4

 

 

 

M6

 

 

 

M8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

M3

 

 

 

M5

 

 

 

M7

 

 

 

 

 

 

 

 

 

Vi

-VSS

2.High-frequency behavior

ω4 is
Aadd

 

 

gain (log)

 

 

Atot

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gain enhancement

 

 

 

 

 

 

 

 

Aadd

 

 

 

 

 

 

= Aadd(0) +1

Aorig

ω (log) ω6

ω1 ω2

ω3 ω4 ω5

8 - 32

CHUNG-YU WU

ω3 : Upper 3-dB frequency of

Aorig

ω5 : Unity-gain frequency of

Atot

ω2

:Upper 3-dB frequency of

Aadd

ω4

:Unity-gain frequency of

Aadd

ω1 : Upper 3-dB frequency of

Atot

ω5

: Unity-gain frequency of

Aorig

We want ω5 Aorig 5 Atot

ω2 > ω1 => The bandwidth is determined by ω1, i.e. Rout and Cload. => ω4 > ω3

But ω4 < ω5 for easy design of Aadd.

and M2 forms a close loop with the dominant pole of ω2 and the second pole at the source of M2, i.e. ω6

The stability consideration requires ω4 < ω6

=>The safe range of

ω3 < ω4 < ω6

*The repetitive usage of the gain-enhancement techniques yields a decoupling of the

op-amp gain and unity-gain frequency fu. That is:gain− without fu↓ .

3.Settling behavior

 

 

 

 

 

 

 

 

 

 

1. Total output impedance Ztot

 

 

 

 

 

 

 

Ztot= Zload // Zout

 

 

 

 

 

 

 

 

 

Zload: impedance of Cload

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zout: output impedance of the amplifier

 

 

Z load

 

 

 

 

 

Normalized impedance

 

 

 

 

Zout Zorig (Add+1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g −1

 

 

 

 

 

 

 

 

(log)

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z tot

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g m−1

 

 

 

 

 

 

 

 

 

 

 

 

 

Z out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g m−1

 

 

 

 

 

 

 

Zorig

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gm−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pole-zero

 

ω (log)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

doublet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω1 ω

2

 

ω

3 ω

4 ω

5

 

 

 

 

 

 

 

 

 

8 - 33

CHUNG-YU WU

ω2 : Upper-3dB freq. Of Aadd èthe same for Z out

ω4 : Unity-gain freq. Of Aadd

 

For ω > ω4 , Aadd < 1èZ out Zorig

 

èA zero is formed at

ω4 for Z out

Z total

= Z load || Z out èA pole-zero doublet is formed around ω4

 

 

èThe same doublet of Atotal

3. Design technique for fast settling

 

 

 

The time constant of the doublet,

1

, must be smaller than the main close-loop time

 

 

 

 

 

 

 

 

ωPZ

constant,

1

. where β is the feedback factor.

 

 

βωunity

The safe range for the

ω4 .

 

 

 

 

 

gain (log)

 

 

 

 

 

 

Aaddd

 

 

 

 

 

1/β

Aclosed-loop

 

 

 

 

 

ω2

βω5

ω4

ω5

ω6

 

 

 

 

 

 

 

ω (log)

 

 

 

Safe range for ω4

 

βω5 < ω4

< ω6

 

 

 

 

doublet

 

 

 

 

4. CMOS OP AMP circuit

8 - 34

CHUNG-YU WU

+VDD

Vbp1

Vbp1

 

 

 

 

Vcm

Vin-

Vin+

 

Ib

Vout+

Vout-

Vbn1

Vbn1

-VSS

MAIN CHARACTERISTICS OF THE OP AMP

Gain enh.

on

Off

 

 

 

DC-gain

90dB

46dB

Unity-gain freq.

116MHz

120MHz

Load cap.

16pF

16pF

Phase margin

64deg.

63deg

Power cons.

52mW

45mW

Output-swing

4.2V

4.2V

Supply voltage

5.0V

5.0V

Settling time

61.5ns

-

0.1% , Vo = 1V

 

 

§ 8-5.2 1V Rail-to-Rail CMOS OP AMPs

Ref.: IEEE JSSC vol.35, no.1, pp.33-44 Jan. 2000

 

8 - 35

1. Typical input stage for rail-to-rail amplifiers

CHUNG-YU WU

 

* Parallel-connected complementary

* Operating zones for low VDD/VSS

differential pairs.

 

* Operating zones for extremely low VDD/VSS

Dead region.

Both pairs are off.

2. Dynamic level-shifting current

 

 

Vi,n,cm=Vi,cm+IR

generator

Vi,p,cm=Vi,cmi-IR

 

 

 

*The input resistance over the entire voltage range is infinite and no loading effect or input current over the previous stage.

Usually mismatches cause negligible input current.

* The symmetrical topology ensures very high CMRR

CMRR =

 

1

(

 

R

+

Gm

)−1

RGm

 

 

 

 

 

 

R

Gm

where Gm

=

I /

Vi,cm

Соседние файлы в папке different