

+VDD
VBIAS
+ |
|
|
|
|
|
Vin |
C |
L |
- V |
out + |
|
- |
|
|
|
||
|
|
|
CL |
CMFB |
|
|
|
|
|
-VSS
CMFB: Common-mode feedback circuitry
3.High-performance micropower fully differential OP AMP.
Simplified schematic of the class AB amplifier:
|
A |
+VDD |
|
M17 |
M12 |
M11 |
|
|
|
M14 |
|
BIAS3 |
|
|
BIAS1 |
M20 |
|
|
M16 |
M5 |
M1 |
M2 |
M6 |
Iin(+) |
|
|
Iin(-) |
OUT(+) |
|
|
OUT(-) |
M7 |
|
|
M8 |
|
I1 |
I2 |
M4 |
|
|
M3 |
|
BIAS2 |
|
M19 |
BIAS4 |
|
|
|
I |
|
I |
M15 |
M18 |
M10 |
M9 |
M13 |
A -VSS


8 - 28
CHUNG-YU WU
*NMOS dynamically biased current mirror:
|
|
|
|
|
I30 |
|
|
OUT |
|
|
|
|
|
|
|
|
|
|
|
|
M30 |
|
|
M15 |
||
|
|
|
|
10 |
|
|
40 |
|
|
|
|
|
10 |
|
|
10 |
|
|
|
|
I9 |
|
|
|
|
|
M9 |
|
|
|
|
|
M |
13 |
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
40 |
|
|
10 |
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
- VSS |
|
If I9 = I30 , |
VGS 9 |
= VGS13 |
= VGS15 |
|
|
|||
|
VDS13 |
= VGS 30 -VGS9 |
|
|
||||
Set |
VDG13 = -VTH ÞVGS 30 = 2VGS 9 -VTH |
|
||||||
Design |
(W ) |
|
, such that |
V |
= 2V |
-V |
|
|
|
L |
30 |
|
|
GS 30 |
GS 9 |
TH |
|
Þ M 13 |
is always sat. at the edge of the linear region. |
Þ Output swing-
*Dynamic CMFB is used.
|
AMPLIFIER DEVICE SIZES |
|
|
DEVICE |
Z(μm) |
L(μm) |
|
|
|
|
|
M1 |
180 |
|
6 |
|
|
|
|
M2 |
180 |
|
6 |
|
|
|
|
M3 |
140 |
|
6 |
|
|
|
|
M4 |
140 |
|
6 |
|
|
|
|
M5 |
150 |
|
6 |
|
|
|
|
M6 |
150 |
|
6 |
|
|
|
|
M7 |
200 |
|
6 |
|
|
|
|
M8 |
200 |
|
6 |
|
|
|
|
M9 |
22 |
|
10 |
|
|
|
|
M10 |
22 |
|
10 |
|
|
|
|

8 - 29
CHUNG-YU WU
M11 |
29 |
7 |
|
|
|
M12 |
29 |
7 |
|
|
|
M13 |
22 |
10 |
|
|
|
M14 |
29 |
7 |
|
|
|
M15 |
22 |
6 |
|
|
|
M16 |
29 |
6 |
|
|
|
M17 |
29 |
7 |
|
|
|
M18 |
22 |
10 |
|
|
|
M19 |
22 |
6 |
|
|
|
M20 |
29 |
6 |
|
|
|
M21 |
20 |
9 |
|
|
|
M22 |
6 |
12 |
|
|
|
M23 |
28 |
6 |
|
|
|
M24 |
6 |
14 |
|
|
|
M25 |
20 |
9 |
|
|
|
M26 |
6 |
12 |
|
|
|
M27 |
28 |
6 |
|
|
|
M30 |
6 |
14 |
|
|
|
AMPLIFIER SPECIFICATIONS
CORE AMPLIFIER SPECIFICATIONS
(0-5 Volts Supply)
100μW Quiescent Power Dissipation
DIFFERENTIAL GAIN |
>10.000« |
||
UNITY GAIN FREQUENCY |
2 MHz« |
|
|
NOISE |
140 nV/ |
Hz |
1KHz |
|
50 nV/ |
Hz |
white |
OUTPUT SWING |
0.5 Volts from Supply« |
||
AREA |
300 mils2 |
||
|
|
|
|
«inferred from filter measurement Ref: IEEE JSSC, vol. SC-20, pp.1122-1132, Dec. 1985

8 - 30
CHUNG-YU WU
4.Fully differential class AB OP AMP with CMFB circuit
|
|
|
|
|
|
|
+ VDD |
|
|
|
|
|
|
|
100μA |
|
|
|
M18 |
|
M16 |
M15 |
|
|
M17 |
|
|
100μA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
M20 |
BIAS |
|
|
BIAS |
M19 |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|||
MC1 |
MC2 |
+ |
Vin- |
M2 |
M1 |
|
Vin+ |
|
|
- |
MC12 MC11 |
|||
|
|
|
V |
M8 |
|
M |
|
|
V |
|
|
|
||
|
|
|
out |
|
7 |
|
out |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
||||
MC4 |
MC5 |
|
|
|
M6 |
M5 |
|
|
|
|
|
MC15 |
MC14 |
|
BIAS |
|
|
|
|
|
M3 |
M4 |
|
|
|
|
|
|
BIAS |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
M14 |
BIAS |
5μA |
5μA |
|
BIAS |
M13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
MC6 |
|
M |
C7 |
|
|
|
|
|
|
|
|
M |
C17 |
M |
|
|
|
|
|
M10 |
M9 |
|
M11 |
|
|
|
C16 |
||
|
|
|
|
|
M12 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
- VSS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Characteristics: |
|
|
|
Technology |
: 5um, P-well CMOS, double-poly cap. |
||
Open loop gian |
: 1180 |
unity-gain freq |
: 10Mhez |
CMRR |
: 61db |
power consumption : 2.3mw |
|
Area |
: 290 mils2 |
power supply |
: ± 5V |
Ref: IEEE JSSC ,vol.sc-20 , pp.1103-1112 , Ddec,1985

8 - 31
CHUNG-YU WU
§8-5 Recent Design Examples of CMOS OP AMPs
§8-5.1 Fast-settling CMOS OP AMP for SC Circuit with 90-dB DC Gain
Reference : IEEE JSSC, vol.25, no.6, pp.1379-1384, Dec 1990.
1.Gain boosting
1)Cascode gain stage with gain enhancement
+VDD
Vref |
+ |
Vo |
|
Cload |
|||
|
Aadd |
||
|
M2 |
||
|
_ |
|
M1
Vi
-VSS
Rout = [g m 2ro2 ( Aadd + 1) + 1]ro1 + ro 2
Atot = g m1ro1[g m 2ro 2 ( Aadd + 1) + 1]
Aorig = g m1 g m2 ro1ro 2
2) Repetitive implementation of gain enhancement +VDD
Vo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M2 |
|
|
|
M4 |
|
|
|
M6 |
|
|
|
M8 |
||||
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M1 |
|
|
|
M3 |
|
|
|
M5 |
|
|
|
M7 |
||||
|
|
|
|
|
|
|
|
|
Vi
-VSS
2.High-frequency behavior


8 - 33
CHUNG-YU WU
ω2 : Upper-3dB freq. Of Aadd èthe same for Z out
ω4 : Unity-gain freq. Of Aadd
|
For ω > ω4 , Aadd < 1èZ out → Zorig |
||||
|
èA zero is formed at |
ω4 for Z out |
|||
Z total |
= Z load || Z out èA pole-zero doublet is formed around ω4 |
||||
|
|
èThe same doublet of Atotal |
|||
3. Design technique for fast settling |
|
|
|
||
The time constant of the doublet, |
1 |
, must be smaller than the main close-loop time |
|||
|
|
||||
|
|
||||
|
|
|
|
ωPZ |
|
constant, |
1 |
. where β is the feedback factor. |
|||
|
|||||
|
βωunity
The safe range for the |
ω4 . |
|
|
|
|
||
|
gain (log) |
|
|
|
|
|
|
|
Aaddd |
|
|
|
|
|
|
1/β |
Aclosed-loop |
|
|
|
|
|
|
ω2 |
βω5 |
ω4 |
ω5 |
ω6 |
|||
|
|||||||
|
|
|
|
|
|
ω (log) |
|
|
|
|
Safe range for ω4 |
||||
|
βω5 < ω4 |
< ω6 |
|
|
|||
|
|
doublet |
|
|
|
|
4. CMOS OP AMP circuit

8 - 34
CHUNG-YU WU
+VDD
Vbp1 |
Vbp1 |
||
|
|
|
|
Vcm
Vin- |
Vin+ |
|
Ib |
Vout+ |
Vout- |
Vbn1 |
Vbn1 |
-VSS
MAIN CHARACTERISTICS OF THE OP AMP
Gain enh. |
on |
Off |
|
|
|
DC-gain |
90dB |
46dB |
Unity-gain freq. |
116MHz |
120MHz |
Load cap. |
16pF |
16pF |
Phase margin |
64deg. |
63deg |
Power cons. |
52mW |
45mW |
Output-swing |
4.2V |
4.2V |
Supply voltage |
5.0V |
5.0V |
Settling time |
61.5ns |
- |
0.1% , Vo = 1V |
|
|
§ 8-5.2 1V Rail-to-Rail CMOS OP AMPs
Ref.: IEEE JSSC vol.35, no.1, pp.33-44 Jan. 2000

|
8 - 35 |
1. Typical input stage for rail-to-rail amplifiers |
CHUNG-YU WU |
|
|
* Parallel-connected complementary |
* Operating zones for low VDD/VSS |
differential pairs. |
|
* Operating zones for extremely low VDD/VSS
Dead region.
Both pairs are off.
2. Dynamic level-shifting current |
|
|
Vi,n,cm=Vi,cm+IR |
generator |
Vi,p,cm=Vi,cmi-IR |
||
|
|
|
*The input resistance over the entire voltage range is infinite and no loading effect or input current over the previous stage.
Usually mismatches cause negligible input current.
* The symmetrical topology ensures very high CMRR
CMRR = |
|
1 |
( |
|
R |
+ |
Gm |
)−1 |
RGm |
|
|
|
|||||
|
|
|
R |
Gm |
||||
where Gm |
= |
I / |
Vi,cm |