
- •2 Гидродинамика ……………………………………………………......68
- •3 Истечение жидкости через отверстия и насадки………………………………………………………………………..............144
- •4 Гидравлические струи………………………………………………...166
- •6 Гидравлический расчет трубопроводов ………………………186
- •7 Равномерное движение потока в открытых руслах…..220
- •Заключение………………………………………………………………...261 Библиографический список……………………………………………………262 приложение а………………………………………………………………262
- •Определение гидравлики и ее краткая история
- •2 Основные определения и физические свойства жидкости
- •3 Вес, масса и плотность жидкости
- •Удельный вес (объёмный вес)
- •5 Сжимаемость жидкости
- •6 Температурное расширение жидкостей
- •Упомянутые процессы – частные случаи политропного процесса
- •7 Вязкость жидкости. Динамический и кинематический коэффициенты вязкости
- •Сила внутреннего трения в жидкости
- •8 Аномальные жидкости
- •9 Идеальная жидкость
- •Контрольные вопросы:
- •1 Гидростатика
- •1.1 Силы, действующие на жидкость
- •1.2 Гидростатическое давление и его свойства
- •1.3 Дифференциальные уравнения равновесия жидкости (Уравнения л. Эйлера)
- •1.4 Поверхность уровня, поверхность равного давления, свободная поверхность
- •1.5 Основное уравнение гидростатики
- •1.6 Виды давлений
- •1.7 Пьезометрическая, вакуумметрическая высоты
- •1.8 Закон Паскаля
- •1.9 Относительный покой жидкости
- •1.9.1 Относительный покой жидкости, перемещаемой вместе с сосудом по вертикали вверх или вниз с ускорением
- •1.9.2 Сосуд с жидкостью движется горизонтально с ускорением а
- •1.9.3 Равновесие жидкости в цилиндрическом сосуде, вращающемся вокруг вертикальной оси, совпадающей с осью сосуда
- •1.10 Сила давления покоящейся жидкости на плоскую поверхность
- •1.11 Центр давления и определение его положения
- •1.12 Давление жидкости на плоскую горизонтальную поверхность. Гидростатический парадокс
- •1.13 Сила давления жидкости на криволинейные поверхности
- •1.14 Основные понятия о равновесии плавающего тела
- •1. 14. 1 Закон Архимеда. Плавучесть тела
- •1. 14. 2 Остойчивость
- •1. 14. 3 Равновесие плавающего тела частично погруженного в жидкость
- •Контрольные вопросы
- •2 Гидродинамика
- •2.1 Основное положение
- •2.2 Виды движения жидкости
- •2.3 Основные элементы потока
- •2.4 Уравнение неразрывности потока жидкости
- •2.5 Дифференциальное уравнения движения идеальной жидкости (уравнения Эйлера)
- •2.6 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •2.7 Вывод уравнения Бернулли из закона живых сил
- •На основании уравнения неразрывности потока
- •2.8 Геометрическая, энергетическая и механическая сущность уравнения Бернулли
- •2.9 Уравнение Бернулли для элементарной струйки реальной жидкости
- •2.10 Уравнение Бернулли для потока реальной жидкости
- •2.11 Понятие о гидравлическом и пьезометрическом уклонах
- •2.12 Практическое использование уравнения Бернулли
- •2.12.1 Расходомер Вентури
- •2.12.2 Прибор для измерения скорости потока (трубка Пито)
- •2.13 Уравнения Навье-Стокса
- •2.14 Основное уравнение равномерного движения жидкости
- •2.15 Гидравлические сопротивления и потери напора при движении жидкости
- •2.15.1 Физическая природа гидравлических сопротивлений
- •2.15.2 Режимы движения и число Рейнольдса
- •2.16 Ламинарный режим движения жидкости
- •2.16.1 Распределение скорости по сечению трубы
- •2.16.2 Определение расхода и средней скорости течения жидкости в трубе
- •2.16.3 Потери напора при ламинарном режиме течения
- •Контрольные вопросы
- •2.17 Турбулентный режим движения жидкости и его закономерности
- •2.17.1 Структура турбулентного потока
- •Воспользуемся уравнением равномерного движения
- •Интегрируя дифференциальное уравнение (2.58), получают
- •2.17.2 Понятие о гидравлически гладкой и шероховатой поверхности
- •2.17.3 Экспериментальные исследования турбулентного режима движения
- •Контрольные вопросы
- •2.18. Местные гидравлические сопротивления
- •2.18.1 Внезапное расширение трубопровода
- •2.18.2 Внезапное сужение трубопровода
- •2.18.3 Потери в диффузоре
- •2.18.4 Постепенное сужение трубы
- •Потери на трение определяются аналогично диффузору:
- •3 Истечение жидкости через отверстия и насадки
- •3.1 Истечения жидкости через малое отверстие в тонкой стенке при постоянном напоре
- •3.2 Экспериментальное определение коэффициента скорости
- •3.3 Истечение жидкости через затопленное отверстие
- •3.4 Опорожнение резервуаров
- •3.5 Физический смысл работа насадка
- •3.6 Внешний цилиндрический насадок
- •3.7 Внутренний цилиндрический насадок
- •3.8 Конически сходящийся насадок
- •3.9 Коноидальные насадки
- •3.10 Конически расходящийся насадок
- •3.11 Энергетическая характеристика насадков
- •4 Гидравлические струи
- •4.1 Незатопленные струи
- •4.2 Затопленные свободные струи
- •4.3 Воздействие струи на твердую преграду
- •4.4 Воздействие струи на криволинейную стенку
- •5 Истечение жидкости через водослив
- •5.1 Классификация водосливов
- •Водослив характеризуется шириной отверстия b, шириной порога s, высотой водосливной стенки со стороны верхнего рв и нижнего рн бьефов (рисунок 5.1).
- •6 Гидравлический расчет трубопроводов
- •6.1 Классификация трубопроводов
- •6.2 Гидравлический расчет коротких трубопроводов
- •6.2.1 Определение скорости и расхода при движении жидкости из трубопровода под уровень
- •6.2.2 Гидравлический расчет сифона
- •6.2.3 Гидравлический расчет всасывающей линии насоса
- •6.3 Расчет длинных простых трубопроводов
- •6.3.1 Гидравлический расчет длинного простого трубопровода
- •6.3.2 Практический расчет длинного простого трубопровода
- •6.4 Гидравлический расчет сложного трубопровода
- •6.4.1 Расчет сложного трубопровода из последовательно соединенных труб разного диаметра
- •6.4.2 Расчет сложного трубопровода с параллельным соединением труб разного диаметра и разными длинами
- •6.4.3 Гидравлический расчёт тупикового трубопровода
- •6.4.4 Гидравлический расчёт трубопровода с непрерывной раздачей расхода по его длине
- •6.5 Гидравлический удар
- •Контрольные вопросы
- •7 Равномерное движение потока в открытых руслах
- •7.1 Виды движений жидкости в открытых руслах
- •7.2 Типы русел
- •7.3 Поперечные профили каналов и их основные параметры
- •7.4 Уравнение равномерного движения потока в открытых руслах
- •7.5 Формулы для определения коэффициента Шези
- •7.6 Гидравлически наивыгоднейший поперечный профиль канала
- •7.7 Допустимые скорости движения воды в каналах
- •7.8 Основные задачи при расчёте каналов на равномерное движение воды
- •8. Моделирование гидравлических процессов
- •8.1 Методы моделирования
- •8.2 Виды подобия
- •8.3 Три теоремы подобия
- •8.4 Гидродинамически подобные потоки
- •8.5 Критерии гидродинамического подобия
- •8.6 Подобие потоков в случае преобладающего влияния сил тяжести
- •8.7 Подобие потоков в случае преобладающего влияния сил вязкости
- •8.8 Другие критерии подобия
- •Приложение а
- •Гидравлика, гидро- и пневмопривод
- •150405.65 И направлений 250400.62, 151002.62
- •660049, Красноярск, пр. Мира, 82.
5 Сжимаемость жидкости
Под сжимаемостью понимают изменение объема жидкости под действием внешних давлений.
Отметим, что одним из основных свойств идеальной жидкости является их полная несжимаемость. Реальные же жидкости практически сжимаемы. Капельные реальные жидкости под действием внешних сил сжимаются незначительно, например плотность вода при повышении давления на 100 МПа увеличивается всего лишь на 5%.
Относительное уменьшение объема жидкости dV при увеличении давления на величинуdРхарактеризуется коэффициентом объемного сжатияр(м2/Н или см2/кг), который определяется по формуле:
,
(5)
где V– первоначальный объем жидкости.
Знак “минус” в формуле (5) обусловлен тем, что положительное увеличение давления dPсоответствует отрицательному приращению объема.
Вода при 0С при
увеличении давления на 1 атмосферу (105Па) сжимается на 1/21000 своего первоначального
объема, т.е. ее коэффициент объемного
сжатия весьма мал и равен[см2/кг].
Величина обратная коэффициенту объемного сжатия называется модулем объемной упругости жидкости k (кг/см2) и определяется как:
.
Для воды при 0Сk=21000 кг/см2. для масла, например, АМГ-10k=13300 кг/см2.
Таким образом, при решении практических задач с водной средой при небольших изменениях давления можно считать воду практически несжимаемой средой.
6 Температурное расширение жидкостей
Температурное расширениекапельных
жидкостей характеризуетсякоэффициентом
температурного расширенияβt,
выражающим относительное увеличение
объемаVжидкости при
изменении температурыtна 1С,:
.
(6)
Коэффициент температурного расширения
воды в диапазоне от 10 до 20 0С,
при давлениир=105Па, имеет
значение
В отличие от капельных жидкостей газы характеризуются значительной сжимаемостью и высокими значениями коэффициента температурного расширения.
Зависимость плотности газа от давления и температуры устанавливается уравнением состояния.
Для идеальных газов, в которых межмолекулярные силы притяжения малы, используют уравнение Клайперона – Менделеева
(7)
где p –абсолютное давление;
R – газовая
постоянная, равная 287,1;
T– абсолютная температура,K.
При температуре Т = Т0 = 287 К, атмосферном давлениир =р0= 105Н/м2 из уравнения (7) для воздуха получают
(8)
Плотность воздуха при других условиях определяют по формуле
(9)
Состояние реального газа определено, если известны его основные параметры: давление, плотность, температура. Простейшие термодинамические процессы протекают при постоянстве какого-либо параметра. Так, если процесс протекает при постоянной температуре, то он называется изотермическим; при постоянном объёме (плотности) – изохорным; при постоянном давлении – изобарным.
Упомянутые процессы – частные случаи политропного процесса
где n – показатель степени политропы.
При n= 0 процесс
изобарный (p=const);
приn= 1 – изотермический
(Т=const); приn= 0 – изохорный ();
приn = k– адиабатный.
Показатель адиабаты
где СP иCV– удельные теплоёмкости газа при постоянном давлении и, соответственно, при постоянном объёме. Для воздухаk= 1,4.
Ввиду того, что объём газа существенно зависит от Тиp,выводы, полученные при изучении капельных жидкостей, можно распространять на газы лишь в том случае, если в пределах рассматриваемого явления изменение давления и температуры незначительны. Значительные разности давлений, вызывающие существенное изменение плотности, могут возникать при движении газов с большими скоростями. Поэтому законы движения несжимаемых жидкостей можно применять к газам при скоростях движения не выше 100 м/с.