Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория ядерных реакторов.pdf
Скачиваний:
545
Добавлен:
26.08.2013
Размер:
7.6 Mб
Скачать

84 Тема 5. Замедление нейтронов и размножающие свойства реактора.

lз (E) =

2Cs (E)

,

(5.3.8)

Σs Σtr

 

 

 

где Сs(E) = (ln Eo/E)/ξ - число рассеяний, необходимое для замедления нейтрона от начальной энергии Ео до данной энергии Е (п.5.2.5).

В теории реакторов чаще используется не сама величина средней длины замедления, а шестая часть квадрата её, названная Ферми возрастом нейтронов в среде при энергии Е.

Возраст нейтронов с энергией Е - это шестая часть среднего квадрата пространственного смещения нейтрона в среде при замедлении от начальной энергии Ео до данной энергии Е.

Величина возраста обозначается греческой буквой τ(E) с указанием на энергию Е замедляющихся нейтронов, которой соответствует возраст.

Итак,

τ(E) =

1

 

 

з2 .

 

l

(5.3.9)

6

 

 

 

 

 

 

С учётом выражения (5.3.8) и следующего за ним выражения для величины Сs(E) формула для возраста замедляющихся нейтронов с энергией Е обретает свой окончательный вид:

ln Eo

τ(Е) = E . (5.3.10)

3ξΣs Σtr

В частности, возраст нейтронов, замедлившихся до энергии сшивки Ес, то есть возраст тепловых нейтронов (обозначим его покороче - τт):

 

 

ln

Eo

 

 

 

τТ

=τ(Ec ) =

Ec

.

(5.3.10a)

 

3ξΣs Σtr

 

 

 

 

Возраст нейтронов, как квадрат длины замедления, имеет размерность площади - см2. Важно

ссамого начала вникнуть в физический смысл этой величины и не воспринимать возраст как время процесса замедления нейтрона (чему способствует житейское понятие возраста человека).

Хотя несложно понять, что возраст нейтронов в среде явно находится в прямой взаимосвязи

схронологическим временем замедления нейтронов: чем больше времени идёт процесс замедления нейтрона, тем на большее расстояние смещается нейтрон в объёме среды от точки своего рождения при делении ядра.

Иопять-таки: возраст нейтронов - характеристика не нейтронов, а комплексная характеристика замедляющих свойств среды, в которой происходит замедление нейтронов: величина возраста является, как видно из (5.3.10), комбинацией характеристик замедляющих свойств вещества

(в знаменателе стоит утроенное произведение замедляющей способности ξΣs и транспортного макросечения вещества Σtr).

Величина возраста для вещества (среды) определяет меру способности этого вещества (среды) давать определённое среднеквадратичное пространственное смещение в ней замедляющихся нейтронов.

Поэтому каждое однородное вещество характеризуется своим значением возраста нейтронов любой энергии Е. В частности возраст тепловых нейтронов:

-для воды в нормальных условиях τто = 29.6 см2;

-для бериллия τто = 90 см2;

-для графита τто = 352 см2, и т.д.

Указанные значения возраста тепловых нейтронов называют стандартными, то есть действительными только в нормальных условиях (при атмосферном давлении и температуре 20оС) для начальной энергии Ео = 2 МэВ и энергии сшивки Ес = 0.625 эВ. Дело в том, что возраст тепловых нейтронов в общем случае существенно зависит от параметров состояния вещества - давления и температуры.

Тема 5. Замедление нейтронов и размножающие свойства реактора.

85

5.3.5. Зависимости τт от температуры и давления. В формуле возраста тепловых нейтро-

нов (5.3.10а) есть три величины (Ес, Σs и Σtr), зависящие от температуры вещества, и две - от давления (Σs и Σtr).

а) С ростом температуры все вещества в различной степени снижают свою плотность (γ), и ядерную концентрацию N = γ NА/A; следовательно, с ростом температуры снижаются величины двух макросечений (Σs = σsN и Σtr = σtrN); уменьшение величин этих сечений (они стоят в знаменателе (5.3.10а)) влечёт увеличение значения возраста тепловых нейтронов. Таким образом, температурное уменьшение плотности вещества ведёт к увеличению возраста тепловых нейтронов в нём.

*) Разумеется, сказанное существенно лишь для жидких и газообразных веществ. В твёрдых реакторных материалах (топливная композиция, конструкционные материалы, твёрдые замедлители), для которых характерны крайне низкие (порядка 10-6) величины температурных коэффициентов объёмного расширения, температурноплотностное изменение возраста тепловых нейтронов практически незаметно, но для теплоносителя (воды) плотностная составляющая температурного изменения возраста не только существенна, но и является определяющей.

Но от температуры зависят не только величины макросечений, но и величина энергии сшивки Ес. Чем выше температура среды, тем выше в ней температура нейтронов Тн, тем жёстче спектр тепловых нейтронов, то есть тем больше его максимум, правое крыло и "хвост" сдвигаются в область более высоких кинетических энергий. А это означает, что величина энергии сшивки (как раз располагающаяся на "хвосте" максвелловского спектра) с ростом температуры увеличивается. А раз так, то с ростом температуры должна уменьшаться величина возраста тепловых нейтронов - в соответствии с формулой (5.3.10а).

Приведенные рассуждения укладываются в простую и достаточно наглядную схему качественного влияния температуры на величину возраста τт:

to↑ →

Тн ↑ → kTн ↑→ Eс↑ → τт

tо↑ →

τт ?

γ↓ → N↓ → Σs, Σtr↓ → τт

Схема опосредствованного влияния температуры среды на величину возраста тепловых нейтронов.

Итак, величина возраста тепловых нейтронов в общем случае находится во власти двух конкурирующих факторов. Какой из них является превалирующим?

-В твёрдых материалах (топливная композиция, графит, циркониевый сплав, нержавеющая сталь) величина возраста тепловых нейтронов с увеличением температуры слабо уменьшается (уменьшение плотности твердых материалов крайне незначительно; влияние температуры на величину возраста тепловых нейтронов прослеживается только по верхней цепочке, через увеличение Ес);

-в жидкостях, парах, газах определяющим является эффект температурного изменения плотности, поэтому с ростом температуры возраст тепловых нейтронов в них однозначно возрастает. Это касается воды, водяного пара, азота и гелия - фигурантов активных зон отечественных тепловых реакторов АЭС.

Вчастности, в воде активной зоны ВВЭР при разогреве реактора от 20 до 300оС величина возраста тепловых нейтронов растет приблизительно от 30 до 80 см2.

-средний возраст тепловых нейтронов в среде активной зоны ВВЭР, где вода занимает более половины объёма активной зоны, с ростом средней температуры активной зоны также однозначно растёт, что должно быть отнесено на счёт превалирующего влияния воды на величину возраста перед прочими материалами активной зоны.

б) Что же касается влияния давления на величину возраста тепловых нейтронов, то это влияние несущественно для твердых материалов и малосущественно для таких почти несжимаемых жидкостей, как вода, а наиболее существенно - для газов и паров.

Если быть принципиальным, то надо отметить, что с ростом давления (p) плотность воды (γ) слабо возрастает, а потому возрастают и величины её молекулярной концентрации (N) и сечений

86

Тема 5. Замедление нейтронов и размножающие свойства реактора.

Σs и Σtr, а, следовательно, величина возраста тепловых нейтронов с ростом давления немного уменьшается.

Впрочем, барометрическое изменение плотности воды незначительно, а, значит, незначительно и барометрическое изменение возраста тепловых нейтронов.

5.4.Уравнение возраста Ферми и его решение

5.4.1.Плотность замедления нейтронов. В каждом кубическом сантиметре объёма активной зоны реактора движутся большие количества нейтронов самых различных энергий. И мысленный "моментальный снимок" движущихся в единичном объёме среды по разным направлениям

ис различными скоростями нейтронов способен вызвать ощущение хаоса, лишенного каких-либо закономерностей.

Но, поскольку движением нейтронов управляет Её Величество Среда, управляет в силу присущих ей природных (= физических, точнее, замедляющих) свойств, какая-то закономерность про- странственно-энергетического распределения замедляющихся нейтронов в зависимости от замедляющих свойств среды должна быть. Одну из таких закономерностей (скорее всего, наиболее важную) описывает уравнение возраста Ферми.

Но прежде чем знакомиться с самим этим уравнением, рассмотрим одну из характеристик, фигурирующих в нём - с плотностью замедления нейтронов.

Плотность замедления q(E) нейтронов при данной энергии Е называется число нейтронов, ежесекундно пересекающих в процессе замедления в единичном объёме среды данный уровень энергии Е.

В соответствии с определением размерность q(E) - нейтр/см3с. Чем должна определяться величина q(E) в реакторе?

-Во-первых, q(E) - величина локальная, поскольку трудно ожидать, чтобы в разных микрообъёмах активной зоны реакция деления шла с одинаковой скоростью, а, значит, и нейтроны деления рождались бы с одинаковой скоростью. Известный нам процесс утечки нейтронов, идущий, главным образом, из периферийных слоев активной зоны, конечно же, должен уменьшать плотность нейтронов любой энергии в периферийных объёмах активной зоны, и, значит, плотность нейтронов любой энергии в центральной области активной зоны должна быть выше, а на её периферии - ниже. Неравномерность распределения плотности нейтронов в объёме активной зоны должна порождать неравномерность скоростей генерации нейтронов деления, а последняя должна неизбежно порождать неравномерность распределения величины плотности замедления нейтронов в объёме активной зоны.

Иначе говоря, величина плотности замедления q(E) является функцией координат точек активной зоны, то есть q = f(E,r), имея в виду под r(x,y,z) краткое обозначение радиус-вектора точки активной зоны с указанными координатами.

-Во-вторых, плотность замедления должна зависеть от замедляющих свойств среды активной зоны, а, значит, - от какой-то из характеристик замедляющих свойств этой среды. Возраст нейтронов с энергией Е оказался наиболее подходящей из всех известных нам характеристик за-

медляющих свойств: в среде конкретного состава возраст τ однозначно связан с энергией нейтронов Е, и каждому определённому значению энергии Е замедляющихся нейтронов в среде соответствует своё определенное значение возраста τ(E) = ln(Eo/E)/3ξΣsΣtr.

Вот почему зависимость плотности замедления от координат, замедляющих свойств среды и энергии нейтронов можно записать более ёмко: q(r, E) = f (r, τ).

Ради лучшего понимания сущности величины плотности замедления полезно задуматься о двух "крайних" частностях этой величины.

Первая: плотность замедления в начале процесса замедления, то есть при Е = Ео = 2 МэВ, при средней энергии, с которой рождаются нейтроны в реакторе и с которой они начинают замедляться. Если обозначить величину плотности замедления при Ео через qf, то эта величина в реакторе с полным основанием может быть названа скоростью генерации нейтронов деления, так как ясно: сколько нейтронов деления рождается ежесекундно в единичном объёме активной зоны -

Тема 5. Замедление нейтронов и размножающие свойства реактора.

87

столько же их без задержки начинает процесс замедления в этом объёме, немедленно пересекая уровень энергии Ео.

Итак, qf = q(Eo) - это скорость генерации нейтронов деления.

Вторая частность: плотность замедления в конце процесса замедления нейтронов в активной зоне, т.е. при энергии Е = Ес. Эта величина может быть названа скоростью генерации тепловых нейтронов: сколько нейтронов пересекают ежесекундно в единичной объёме активной зоны уровень энергии Ес, - столько же их ежесекундно в этом единичном объёме становятся тепловыми нейтронами.

Итак, qт = q(Ec) - это скорость генерации тепловых нейтронов.

В общем же случае, в интервале энергий замедления Ес < E < Eo величина плотности замедления q = q(r,τ), разумеется, отлична от qf и от qт.

5.4.2. Уравнение возраста Ферми. При рассмотрении нейтронного цикла отмечалось, что подавляющее большинство веществ очень слабо поглощают эпитепловые нейтроны, и исключение из правила составляют резонансные захватчики замедляющихся нейтронов, среди которых выделяется 238U - обязательный компонент топлива активных зон большинства тепловых реакторов. Поэтому особенностью процесса реального замедления нейтронов в активных зонах сравнительно с замедлением в идеальных, не поглощающих замедляющиеся нейтроны средах, является непрерывное уменьшение количества замедляющихся нейтронов за счёт их резонансного захвата в процессе замедления.

Поэтому плотность замедления нейтронов любой энергии Е диапазона замедления в реальной активной зоне обязательно должна быть меньше, чем плотность замедления в той же активной зоне, лишённой резонансных захватчиков.

Это в большей степени существенно для гомогенного реактора, в котором все компоненты активной зоны (включая и резонансных захватчиков) равномерно распределены в активной зоне. Гетерогенного реактора это касается несколько меньше, т.к. подавляющее большинство нейтронов проходят процесс замедления в замедлителе - среде, почти не поглощающей эпитепловые нейтроны и расположенной отдельно от топливной композиции, в объёме которой содержится резонансный захватчик.

Относительно слабое поглощение эпитепловых нейтронов большинством материалов активной зоны в теории тепловых реакторов породило так называемое одногрупповое возрастное приближение, основная суть которого состоит в следующем:

-поглощение эпитепловых нейтронов считается не влияющим на процесс их замедления, то есть замедление в реальной активной зоне подчинено тем же закономерностям, что и в идеальной непоглощающей среде;

-снижение величины реальной плотности замедления в конце процесса замедления (qт) по сравнению с величиной плотности замедления в той же, но не поглощающей эпитепловые нейтро-

ны, среде (qт*), можно учесть с помощью известного нам коэффициента ϕ - вероятности избежания резонансного захвата в активной зоне реактора:

qт = qт*ϕ

(5.4.1)

Именно для непоглощающих эпитепловые нейтроны сред справедливо уравнение возраста

Ферми:

dq* (rr,τ) = 2 q* (rr,τ). (5.4.2) dτ

Левая часть уравнения - производная функции плотности замедления по величине возраста нейтронов, а так как возраст нейтронов в конкретной среде однозначно связан с уровнем энергии замедляющихся нейтронов, то эта величина несет в себе неявный смысл скорости изменения плотности замедления по энергиям нейтронов.

Правая часть - оператор Лапласа от функции плотности замедления, то есть сумма вторых частных производных плотности замедления по координатам активной зоны.

88Тема 5. Замедление нейтронов и размножающие свойства реактора.

Вцелом решение уравнения возраста для активной зоны конкретных геометрии и состава

даёт функцию пространственного (то есть по координатам) и энергетического (то есть по возрастам, а значит - и по энергиям) распределения замедляющихся нейтронов в активной зоне в зависимости от замедляющих свойств среды активной зоны (которые, как мы видели ранее, скрыты в величине возраста). Возраст нейтронов τ фигурирует в уравнении Ферми в качестве сложной переменной.

5.4.3. Решение уравнения возраста. Уравнение возраста является дифференциальным уравнением второго порядка в частных производных, поэтому для получения конкретного его решения для условий активной зоны реактора необходимо указать пару начальных условий. В качестве последних можно использовать две упомянутых выше частности:

- при Е = Ео

τ(Eo) = 0 и q*(r, 0) = qf*;

- при Е = Ес

τ(Ec) = τт и q*(r,τт) = qт*.

Предположим, что решение уравнения возраста найдено в виде произведения двух функций: q*(r,τ) = T(τ) R(r), (5.4.3)

одна из которых Т(τ) является функцией только возраста τ, а другая R(r) - функцией только координат r.

Если (5.4.3) - решение уравнения (5.4.2), то, будучи подставленным в (5.4.2), оно должно обращать последнее в тождество. Выполним эту подстановку, для чего найдём вначале выражения для dq*/dτ и 2q*:

dq*/dτ = R dT/dt,

(5.4.4)

так как функция R переменной τ не содержит, а это значит, что при частном дифференцировании к ней можно относиться как к постоянной величине. Аналогично рассуждая,

2q* = T 2R,

(5.4.5)

так как функция Т не содержит координат r.

Итак, подстановка (5.4.4) и (5.4.5) в (5.4.2) даёт тождество:

R dT/dτ ≡ T 2R,

или, что то же:

(1/T) dT/dτ ( 2R) / R

(5.4.6)

Задумавшись о том, когда может быть так, что две разные функции различных аргументов всегда тождественно равны друг другу при различных значениях этих аргументов, мы должны однозначно ответить так, как ответил Э.Ферми: это может быть только в том случае, если обе эти функции - есть постоянная величина.

Более того, связывая функцию (1/Т)dT/dτ с физическим смыслом зависимости плотности замедления q* от возраста τ, можно сказать, что эта постоянная величина (обозначим её - B2) должна иметь обязательно отрицательный знак, т.к. функция плотности замедления q*(τ) не может быть возрастающей функцией с увеличением возраста нейтронов (иначе это противоречило бы физическому смыслу: число нейтронов в процессе их замедления может либо оставаться постоянным (в непоглощающей среде), либо убывать (за счёт поглощения и утечки), но никак не возрастать).

Поскольку B2 - присущая конкретному реактору величина, её принято называть параметром реактора.

С учётом принятого обозначения упомянутой постоянной величины тождество (5.4.6) можно переписать в виде двух отдельных равенств:

(1/Т) dT/dτ = - B2

(5.4.7)

( 2R)/R = - B2

(5.4.8)

Уравнение (5.4.7) представляет собой энергетическую часть решения уравнения возраста, в то время как уравнение (5.4.8) - пространственная его часть.

Общее решение дифференциального уравнения (5.4.7) имеет вид:

T = To exp(-B2τ),

где То - некоторое значение функции Т при τ = 0.

Тема 5. Замедление нейтронов и размножающие свойства реактора.

89

Cледовательно, плотность замедления q* в соответствии с (5.4.3) будет равна:

q* = RT = RTo exp(-B2τ)

(5.4.9)

Используя для (5.4.9) первое граничное условие, имеем: qf* = RTo

(5.4.10)

Но величину qf* - скорости генерации нейтронов деления - можно получить и из общих рассуждений, исходя из среднего значения плотности потока тепловых нейтронов в активной зоне реактора.

Если Σa - среднее по объёму активной зоны макросечение поглощения тепловых нейтронов, а

Ф- средняя по её объёму плотность потока тепловых нейтронов, то:

-ΣaФ - это средняя по объёму активной зоны скорость поглощения тепловых нейтронов в

ней, а

-ΣaФθ - это средняя по объёму активной зоны скорость поглощения тепловых нейтронов делящимися под действием тепловых нейтронов ядрами, а

-ΣaФθη - средняя по объёму активной зоны скорость генерации нейтронов деления, полученных в делениях ядер топлива под действием тепловых нейтронов, а

-ΣaФθηε - средняя скорость генерации всех нейтронов деления, полученных в делениях топлива нейтронами всех энергий; это и есть искомая нами величина

qf* = ΣaФθηε = ΣaФk/ϕ.

Сравнивая последнее выражение с (5.4.10), имеем:

 

kΣaФ/ϕ = RTo,

откуда

R = kΣaФ/(Тоϕ)

(5.4.11)

Таким образом, общее решение (5.4.9) с учётом найденной величины функции R (5.4.11) будет иметь вид:

q* = RToexp(-B2τ) = (1/ϕ) kΣaФ exp(-B2τ]

(5.4.12)

Выражение (5.4.12) - есть общее решение уравнения возраста Ферми, дающее величину плотности замедления q* при любом произвольном значении возраста τ. Из второго начального условия для плотности замедления тепловых нейтронов это выражение приобретает частный вид средней по объёму активной зоны скорости генерации тепловых нейтронов:

qт* = (1/ϕ) kΣaФ exp(-B2τт)

(5.4.13)

Напомним, что до сих пор речь велась о плотности замедления в идеальной не поглощающей замедляющиеся нейтроны среде. Подставляя найденную величину qт* в формулу (5.4.1), имеем:

qт = qт*ϕ = kΣaФ exp(- B2τт)

(5.4.14)

- выражение для скорости генерации тепловых нейтронов в реальной активной зоне с резонансными поглотителями замедляющихся нейтронов.

5.5. Вероятность избежания утечки замедляющихся нейтронов

Вероятность избежания утечки замедляющихся нейтронов pз - это доля нейтронов, избежавших утечки при замедлении, от общего числа нейтронов поколения, начавших процесс замедления в активной зоне. Но величину этой вероятности можно переосмыслить и по-другому:

р

з

=

скорость генерации ТН в 1 см3 реальной а.з.

=

q

T

скорость генерации ТН в 1

см3

а.з. бесконечных размеров

qT

 

 

 

*) Имеются в виду активные зоны одинакового состава.

Выражение для скорости генерации тепловых нейтронов в реальной активной зоне qт получено в предыдущем пункте. Подходя к величине qтс теми же мерками в рассуждениях, что и к qт, несложно получить:

qт= kΣaФ

(5.5.1)

Подставляя (5.4.14) и (5.5.1) в приведенную логическую формулу для pз, имеем:

pз = exp (- B2τт)

(5.5.2)

90

Тема 5. Замедление нейтронов и размножающие свойства реактора.

Сравнивая (5.5.2) с начальным предположением (5.1.1), мы должны согласиться, что гипотеза (5.1.1) была не лишена оснований: pз действительно определяется, во-первых, величиной параметра реактора (позже убедимся, что параметр B2 имеет и геометрический смысл), а, во-вторых, - величиной комплексной характеристики замедляющих свойств среды активной зоны реактора, каковой и является возраст тепловых нейтронов (величина, равная шестой части среднего квадрата пространственного смещения замедляющегося нейтрона, т.е. пропорционально связанная с величиной квадрата средней длины замедления).

Чем выше величина возраста тепловых нейтронов в реакторе (т.е. чем хуже замедляющие свойства среды активной зоны), тем меньше величина вероятности избежания утечки замедляющихся нейтронов, поскольку величина возраста определяет толщину приграничного слоя активной зоны, из которого возможна утечка замедляющихся нейтронов. Чем меньше замедляющихся нейтронов располагают возможностью для утечки, тем выше доля замедляющихся нейтронов, которые останутся к концу замедления в активной зоне (то есть выше величина pз).

Что же касается другой величины, определяющей значение pз, - параметра реактора B2, то пока можно лишь сказать, что с геометрией активной зоны эта величина каким-то образом связана, о чём свидетельствует её размерность - см-2. С непростым смыслом величины B2 ещё предстоит познакомиться подробнее.

5.6. Спектр замедляющихся нейтронов Ферми в гомогенной непоглощающей среде

Игнорируя вывод, приведём конечный вид спектра Ферми (с выводом можно познакомиться, например в [8]).

Распределение величины плотности потока замедляющихся нейтронов в непоглощающих средах (имеются в виду свойства не поглощать замедляющиеся нейтроны, а не тепловые) оказывается подчинённым закономерности:

Ф(E) =

q f

(5.6.1)

ξΣs E

Это выражение справедливо как для простой однородной среды, так и для сложных гомогенных сред, состоящих их нескольких сортов замедляющих ядер. В этом случае в формулу (5.6.1) подставляется сумма значений замедляющей способности k компонентов сложной среды

k

 

ξΣs = ξ1Σs1 + ξ2Σs2 + ξ3Σs3 + ... + ξkΣsk = ξi Σsi

(5.6.2)

i=1

Учитывая классическую зависимость кинетической энергии нейтрона от его скорости (Е = mv2/2) и связь плотности потока и плотности нейтронов одинаковой скорости

Ф(Е) = n(E) v(E) = n(E)

2E

,

 

m

 

выражение для спектра замедляющихся нейтронов можно записать так:

n(E) =

m

 

q f

(5.6.3)

2

ξΣs E 3 / 2

 

 

 

Таким образом, величина плотности замедляющихся нейтронов по энергиям в непоглощающей среде распределяется по закону -3/2", то есть плавно возрастает с уменьшением энергии нейтронов в процессе их замедления, и столь же плавно (без скачков и изломов) переходит при Е

=Ес в максвелловский спектр тепловых нейтронов (рис.5.9).

Вреальной замедляющей среде активной зоны, которой свойственно очень слабое поглощение замедляющихся нейтронов в замедлителе, и заметное поглощение их в топливе твэлов (где содержится резонансный захватчик замедляющихся нейтронов – уран-238), реальный спектр замедляющихся нейтронов проходит ниже изображённого на рис.5.9., но качественно выглядит так же.

Тема 5. Замедление нейтронов и размножающие свойства реактора.

91

n(E)

Спектр тепловых нейтронов (Максвелла)

Спектр замедляющихся нейтронов (Ферми)

E

Ec

Рис.5.9. Граница тепловых и замедляющихся нейтронов - энергия сшивки энергетических спектров Максвелла и Ферми (спектры ненормированные).

Уже отмечалось, что об энергетическом спектре нейтронов в реакторе имеет смысл говорить только для критического реактора, так как любой энергетический спектр в поглощающей среде имеет динамически равновесный характер: плотность нейтронов любой энергии Е поддерживается неизменной во времени в любом единичном объёме за счёт неизменной разницы скоростей:

- прихода замедляющихся нейтронов на уровень энергии Е из области более высоких энер-

гий;

-ухода замедляющихся нейтронов с уровня энергии Е в область более низких энергий;

-появления в единичном объёме новых нейтронов энергии Е за счёт делений ядер (если таковые имеются в рассматриваемом единичном объёме);

-поглощения нейтронов при энергии Е (если в единичном объёме наличествуют резонансные поглотители) и

-утечки нейтронов энергии Е из рассматриваемого единичного объёма (понимая под утечкой разницу скоростей ухода и прихода нейтронов с энергией Е в этом единичном объёме).

Врамках одногруппового возрастного приближения договорились считать, что поглощение

вдиапазоне энергий замедления отсутствует, а заметное поглощение замедляющихся нейтронов в

реальных средах учитывать с помощью вероятности избежания резонансного захвата (ϕ). В этом приближении среда активной зоны поглощает только тепловые нейтроны. И если предполагать, что энергетический спектр тепловых нейтронов - максвелловского типа, величина и положение максимума на шкале энергий в нём явно должны зависеть от поглощающей характеристики среды (Σa) и замедляющей способности среды (ξΣs) в области энергий перехода от замедляющихся нейтронов к тепловым (то есть в области энергии сшивки Ес) и ниже (то есть в пределах самого спектра тепловых нейтронов).

Действительно, поскольку в тепловой области энергий микросечения поглощения изменяются по закону "1/v" (или"Е-1/2"), то основное поглощение тепловых нейтронов происходит при более низких энергиях левого крыла спектра Максвелла; чем выше величина микросечения поглощения активной зоны σa (а значит - и Σa), тем больше тепловых нейтронов поглощается при Е < Eнв, тем больше "выедание" левого крыла спектра, а это значит, что положение максимума спектра (характеризуемое Енв - наиболее вероятной энергией тепловых нейтронов) с увеличением поглощающей способности среды должно смещаться вправо, в область более высоких энергий. Иначе говоря, с увеличением поглощающих свойств среды энергетический спектр тепловых нейтронов ужестчается. Но, т.к. положение максимума в спектре тепловых нейтронов определяет температуру нейтронов Тн (ведь Енв= kTн), то можно выразиться иначе: с увеличением поглощающих свойств сре-

92

Тема 5. Замедление нейтронов и размножающие свойства реактора.

ды повышается температура нейтронов в ней. И чем больше величина макросечения поглощения среды (Σa) - тем больше величина температуры нейтронов в ней (Тн) отклоняется от её термодинамической температуры (Т) в сторону увеличения.

С другой стороны, чем выше величина замедляющей способности среды (ξΣs), тем с большей скоростью пополняется за счёт замедления нейтронов весь спектр тепловых нейтронов (в том числе и его левое крыло). Поэтому положение его максимума, наоборот, смещается влево, в область более низких энергий, т.е. с увеличением замедляющей способности среды спектр тепловых нейтронов «умягчается», и температура тепловых нейтронов в среде с лучшими замедляющими свойствами меньше отличается от термодинамической температуры этой среды по сравнению со средой с более слабыми замедляющими свойствами.

Таким образом получается, что температура нейтронов Тн находится в прямой зависимости от величины Σa среды активной зоны и в обратной зависимости - от ξΣs.

Это дало повод к предположению, что обе зависимости являются пропорциональными, что дает лёгкую возможность построить полуэмпирические зависимости для расчёта температуры нейтронов в тепловом реакторе:

Тн = Тз[1 + 1.8 (Σa/ξΣs)] - для уран-водных гомогенных сред, (5.6.4) и

Тн = Тз[1 + 0.91(AΣa/Σs)] - при использовании других замедлителей (с массовым числом A)

(5.6.5)

Таким образом, температура нейтронов в тепловом реакторе - величина, прямо пропорциональная термодинамической температуре активной зоны и величине, обратной коэффициенту замедления среды в ней.

Приведённые формулы получены, строго говоря, для гомогенных смесей топлива и замедлителя, однако, с достаточной точностью могут служить и для оценки температуры нейтронов в гетерогенных активных зонах реакторов соответствующих типов, для чего в них должны подставляться средняя термодинамическая температура замедлителя Тз и величины гомогенизированных макросечений активной зоны Σa и Σs.

*) Гипотеза насчёт пропорциональности Тнз и обратного коэффициента замедления являлась бы строгодоказательной только в том случае, если бы было строго доказано, что энергетический спектр тепловых нейтронов, как бы ни деформировала его среда своими поглощающими и замедляющими свойствами, всегда сохраняет максвелловскую форму.

Разговор был посвящен фермиевскому спектру замедляющихся нейтронов, но был смещен к спектру тепловых нейтронов, чтобы подчеркнуть два важных момента:

-Во-первых, между двумя этими энергетическими спектрами в критическом тепловом реакторе существует какая-то неясная пока взаимосвязь: любое, самое малейшее, изменение в спектре тепловых нейтронов обязательно должно повлечь за собой изменение и в спектре замедляющихся нейтронов, и, наоборот, изменение в фермиевском спектре должно отразиться и на максвелловском распределении тепловых нейтронов. Эту взаимосвязь можно было бы предсказать и без углубленного экскурса в спектры, если просто по-материалистически уверовать в то, что всем поведением замедляющихся и тепловых нейтронов управляет одна Среда, только Среда и исключительно Среда. Это Она, благодаря присущим ей природным свойствам, единым образом, с единой закономерностью рождает с определённой скоростью быстрые нейтроны деления, замедляет их с определённой (связанной со скоростью генерации быстрых нейтронов) интенсивностью, поглощает их с определенной (связанной со скоростями генерации и замедления) скоростью, и определяет скорость утечки нейтронов из любого микрообъёма, - и все это природное предопределение свойственно нейтронам любой энергии. Иначе говоря, Среда, в силу своих природных свойств, и расставляет все нейтроны по энергиям в единый энергетический спектр, не являющийся ни спектром Уатта, ни спектром Ферми и ни спектром Максвелла.

-Во-вторых, хотя спектры Уатта, Ферми и Максвелла и отражают закономерности рождения, замедления и поглощения нейтронов, связать их в единое аналитическое выражение для единого энергетического спектра реактора не удаётся, так как спектры Уатта и Максвелла нормированы соответственно на один нейтрон деления и тепловой нейтрон, а спектр Ферми - вообще не является нормированным.

Соседние файлы в предмете Атомная энергетика