- •Оглавление
- •Глава 5. Пространственная система сил 45
- •Глава 18. Механические свойства 173
- •Глава 19. Расчет несущей способности 178
- •Глава 20. Устойчивость сжатых 204
- •Предисловие
- •Раздел 1 основы расчета абсолютно твердого тела как модели механического объекта
- •Глава 1. Основные положения статики
- •1.1. Общие сведения
- •1.2. Аксиомы статики
- •1.3. Связи и их реакции
- •Некоторые разновидности связей и правила определения их реакций
- •Глава 2. Плоская система сходящихся сил
- •2.1. Сложение плоской системы сходящихся сил. Геометрическое условие равновесия
- •2.2. Определение равнодействующей системы сходящихся сил методом проекций. Аналитическое условие равновесия
- •Глава 3. Теория пар сил на плоскости
- •3.1. Пара сил. Эквивалентность пар сил
- •3.2. Сложение пар сил. Условие равновесия пар
- •3.3. Момент пары относительно точки
- •Глава 4. Плоская система произвольно расположенных сил (пспрс)
- •4.1. Приведение силы к точке
- •4.2. Приведение к точке плоской системы произвольно расположенных сил
- •4.3. Теорема Вариньона
- •4.4. Уравнения равновесия и их различные формы
- •Частные случаи решения уравнений равновесия
- •4.5. Балочные системы. Разновидности опор и виды нагрузок
- •4.6. Реальные связи. Трение скольжения и его законы
- •Основные законы трения
- •Глава 5. Пространственная система сил
- •5.1. Сложение пространственной системы сходящихся сил. Условие равновесия
- •5.2. Момент силы относительно оси
- •5.3. Пространственная система произвольно расположенных сил. Условие равновесия
- •Глава 6. Кинематика точки
- •6.1. Основные понятия кинематики
- •6.2. Способы задания движения точки
- •6.3. Определение скорости точки при естественном способе задания ее движения
- •6.4. Определение ускорения точки при естественном способе задания ее движения
- •6.5. Частные случаи движения точки
- •Равномерное движение точки по окружности
- •Глава 7. Простейшие движения твердого тела
- •7.1. Поступательное движение
- •7.2. Вращательное движение. Угловая скорость, угловое ускорение
- •7.3. Частные случаи вращательного движения
- •7.4. Скорости и ускорения различных точек вращающегося тела
- •7.5. Способы передачи вращательного движения
- •Глава 8. Сложное движение
- •8.1. Сложное движение точки
- •8.2. Плоскопараллельное движение тела
- •8.3. Определение скорости любой точки тела при плоскопараллельном движении
- •Глава 9. Движение несвободной материальной точки
- •9.1. Основные понятия и аксиомы динамики
- •9.2. Свободная и несвободная точки
- •9.3. Силы инерции
- •9.4. Принцип Даламбера
- •Глава 10. Работа и мощность
- •10.1. Работа постоянной силы при прямолинейном перемещении
- •10.2. Работа равнодействующей силы
- •10.3. Работа переменной силы на криволинейном пути
- •10.4. Мощность
- •10.5. Механический коэффициент полезного действия
- •10.6. Работа сил на наклонной плоскости
- •10.7. Работа и мощность при вращательном движении тел
- •10.8. Трение качения. Работа при качении тел
- •Глава 11. Общие теоремы динамики
- •11.1. Импульс силы. Количество движения. Кинетическая энергия
- •11.2. Теорема об изменении количества движения точки
- •11.3. Теорема об изменении кинетической энергии точки
- •11.4. Понятие о механической системе
- •11.5. Основное уравнение динамики вращающегося тела
- •11.6. Кинетическая энергия тела. Кинетический момент
- •Раздел 2
- •12.2. Классификация кинематических пар. Кинематические цепи
- •Кинематические цепи
- •12.3. Структурный синтез и анализ механизмов
- •12.4. Конструктивно-функциональная классификация механизмов
- •12.5. Передаточное отношение
- •Глава 13. Основы расчета и проектирования механизмов
- •13.1. Общие сведения о передачах.
- •Основные виды зубчатых передач
- •13.2. Общие сведения о методах изготовления зубчатых колес
- •13.3. Кинематика зубчатых механизмов с неподвижными осями вращения
- •13.4. Кинематика зубчатых механизмов с подвижными осями вращения
- •Глава 14. Основы кинематического анализа механизмов
- •14.1. Задачи и методы кинематического анализа механизмов. Масштабные коэффициенты
- •Масштабные коэффициенты
- •14.2. Построение положений рычажных механизмов методом засечек
- •14.3. Определение скоростей и ускорений рычажных механизмов методом планов
- •Глава 15. Методические указания к решению задач
- •15.1. Кинематика зубчатых механизмов
- •С неподвижными осями вращения
- •15.2. Кинематика зубчатых механизмов с подвижными осями вращения
- •Решение
- •Раздел 3
- •16.2. Напряжение как мера внутренних сил
- •Глава 17. Напряженно-деформированное
- •17.2. Однородное растяжение бруса как пример реализации одноосного напряженного состояния материала
- •17.3. Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона
- •17.4. Частный случай плоского напряженного состояния – чистый сдвиг. Закон Гука при сдвиге
- •Глава 18. Механические свойства конструкционных материалов
- •18.1. Экспериментальные исследования механических свойств
- •При проведении стандартных испытаний на растяжение
- •18.2. Условие прочности, коэффициент запаса прочности, допускаемые напряжения
- •Глава 19. Расчет несущей способности
- •19.2. Особенности расчета статически неопределимых стержневых систем
- •19.3. Напряженно-деформированное состояние при прямом поперечном изгибе
- •19.4. Условия прочности при прямом поперечном изгибе
- •19.5. Расчеты на жесткость при изгибе
- •19.6. Кручение вала (стержня) круглого поперечного сечения
- •19.7. Расчеты на прочность и жесткость при кручении
- •19.8. Условие прочности вала при совместном действии крутящего и изгибающего моментов
- •Глава 20. Устойчивость сжатых элементов Конструкций
- •20.1. Понятие о критической силе для сжатого стержня.
- •Формула Эйлера
- •20.2. Критическое напряжение. Пределы применимости формулы Эйлера
- •Раздел 4
- •21.2. Особенности геометрии косозубых, шевронных и конических передач
- •21.3. Особенности геометрии конических колес
- •21.4. Усилия в зацеплении зубчатых передач
- •21.5. Материалы и термообработка для зубчатых колес
- •21.6. Расчеты зубьев на сопротивление усталости по изгибным и контактным напряжениям
- •Глава 22. Червячные передачи
- •22.1. Общие сведения. Геометрические и кинематические особенности червячных передач
- •22.2. Усилия в зацеплении. Расчет зубьев колес. Тепловой расчет червячных передач
- •Глава 23. Ременные передачи
- •23.1. Общие сведения. Ремни. Шкивы
- •23.2. Скольжение ремня
- •23.3. Усилия и напряжения в ремнях. Тяговая способность и кпд передачи
- •Глава 24. Цепные передачи
- •24.1. Общие сведения. Цепи. Материалы
- •24.2. Усилия в элементах передачи. Расчет передачи
- •Глава 25. Несущие детали и опоРныЕ устройства механизмов
- •25.1. Валы и оси. Классификация.
- •Расчет на прочность. Материалы
- •25.2. Опоры валов и осей. Классификация подшипников
- •25.3. Динамическая грузоподъемность подшипников качения. Выбор подшипников и определение их ресурса
- •25.4. Муфты механических приводов. Общие сведения и классификация
- •25.5. Муфты общего назначения. Особенности расчета
- •25.6. Предохранительные муфты
- •Глава 26. Соединения деталей и уЗлОв машин
- •26.1. Сварные соединения. Общие сведения и характеристика. Изображения и обозначения на чертежах швов сварных соединений
- •26.2. Расчет на прочность и проектирование сварных соединений при постоянных нагрузках
- •26.3. Соединения пайкой и склеиванием
- •26.4. Соединения типа «вал–ступица». Общая характеристика и особенности расчета
- •26.4.1. Шпоночные соединения
- •26.4.2. Шлицевые соединения
- •26.4.3. Профильные соединения
- •26.4.4. Штифтовые соединения
- •26.5. Резьбовые соединения
- •26.5.1. Крепежные детали и стопорящие устройства
- •26.5.2. Резьба и ее параметры
- •26.5.3. Силовые зависимости в резьбовом соединении
- •26.5.4. Самоторможение и коэффициент полезного действия винтовой пары
- •26.5.5. Расчет резьбовых соединений на прочность
- •26.5.6. Расчет резьбовых соединений при переменном режиме нагружения
- •Литература
- •Приложение сортамент прокатной стали п1. Сталь горячекатаная. Балки двутавровые. Гост 8239–89.
- •П2.Сталь горячекатаная. Швеллер. Гост 8240–89
- •П3. Сталь горячекатаная. Уголки равнополочные: гост 8509–86
- •П4. Сталь горячекатаная. Уголки неравнополоные: гост 8510–86
11.2. Теорема об изменении количества движения точки
Пусть на точку массой m действует система постоянных сил, равнодействующая которых согласно основному закону динамики
(изменение количества движения точки равно импульсу всех сил).
Спроецировав на оси координат обе части векторного равенства (11.1), в общем случае получим:
а) систему трех скалярных уравнений:
где
б) если силы, действующие на точку, лежат в одной плоскости, то получим два скалярных уравнения;
в) если силы действуют вдоль одной прямой, то, спроецировав уравнение (11.1) на эту прямую, получим одно скалярное уравнение:
.
11.3. Теорема об изменении кинетической энергии точки
Пусть на точку действует система постоянных сил, равнодействующая которых . Допустим, что силы действуют вдоль одной прямой. Тогда
;
.
На прямолинейном пути
Отсюда с учетом того, что ,
,
т. е. изменение кинетической энергии точки равно сумме работ действующих сил.
11.4. Понятие о механической системе
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой (рис. 11.1). Например, механическую систему образуют Земля и Луна или спортивный самолет и буксируемый им планер.
Любое материальное тело рассматривается в механике как механическая система, образуемая совокупностью материальных точек. Абсолютно твердое тело носит название неизменяемой механической системы, так как расстояние между материальными точками остается неизменным. Изменяемые системы – любые машины или механизмы.
Рис. 11.1. К понятию о механической системе
Если рассматривать какую-либо механическую систему, то силы, действующие на точки системы со стороны точек или тел, не входящих в эту систему, называются внешними (Fe, Re), а силы, действующие на точки системы со стороны точек или тел этой же системы, называются внутренними (Fi).
Главный вектор всех внутренних сил механической системы равен нулю, причем это условие соблюдается, только если рассматриваемая механическая система неизменяемая.
Движение механической системы зависит:
1) от действующих сил;
2) суммарной массы системы
,
где m – масса механической системы;
– массы ее отдельных точек;
3) положения центра масс системы.
Движение центра масс определяется (только при поступательном движении) уравнением
,
где – результирующая всех внешних сил, приложенных к точкам системы;
m – масса системы;
– ускорение центра масс системы.
Как видим, это уравнение аналогично основному уравнению динамики точки. Смысл его состоит в том, что центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и приложены все внешние силы.
11.5. Основное уравнение динамики вращающегося тела
Пусть твердое тело (рис. 11.2) под действием внешних сил (эти силы на рис. 11.2 не показаны) вращается около оси OZ с угловым ускорением .
akn ρk akt ΔFинkn ΔFинkt
Рис. 11.2. К определению работы сил, действующих на вращающееся тело
Алгебраическая сумма моментов всех сил (активных сил и сил сопротивления) относительно оси OZ
называется вращающим моментом.
Рассматривая твердое тело как механическую систему, разобьем его на множество материальных точек массами . Каждая из этих точек движется по окружности радиуса , с ускорением , которое разложим на касательное и нормальное ускорение.
Приложим к каждой материальной точке элементарные силы инерции: касательную и нормальную . Согласно принципу Даламбера, активные силы, силы реакции связей и силы инерции образуют уравновешенную систему. Поэтому алгебраическая сумма моментов всех этих сил относительно оси OZ должна быть равна нулю, т. е.
(моменты сил относительно оси OZ равны нулю, так как линии действия этих сил пересекают ось).
У любой точки вращающегося тела числовое значение касательного ускорения ,поэтому значение , где – угловое ускорение тела. Тогда
Величина , равная сумме произведений масс всех точек тела на квадраты их расстояний от оси вращения, называетсямоментом инерции тела (системы) относительно этой оси.
Основное уравнение динамики вращающегося тела:
В СИ момент инерции тела выражается в кг · м2.